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1 Introduction

We give a definition of generalized trigonometric functions. The notations are due to Lang
and Edmunds [1]. For real numbers p, q > 1, we define a function Fpq by

Fpq(y) =

∫ y

0

(1− tq)−1/pdt, (1.1)

where y ∈ [0, 1]. We introduce generalized pi’s as follows:

πpq = 2Fpq(1) =
2

q
B
( 1

p∗
,
1

q

)
=

p∗

q
πq∗p∗ , (1.2)

where 1/p∗ = 1− 1/p and B(., .) denotes the beta function. We define a function y = sinpq t
on [0, πpq/2] by the inverse function of t = Fpq(y), called generalized sine function. We define
a function x = cospq t on [0, πpq/2] by the following equality:

cospq t = (1− (sinpq t)
q)1/p, (1.3)

called generalized cosine function. We can define sinpq t, cospq t on the whole real numbers
by the following equalities:

sinpq t = sinpq(πpq − t), sinpq t = − sinpq(−t),

cospq t = − cospq(πpq − t), cospq t = cospq(−t). (1.4)

When p = q, we abbreviate sinpp t to sinp t, cospp t to cosp t and πpp to πp. When p = q = 2,
the functions sinpq t, cospq t and πpq are obviously reduced to the usual sin, cos and pi.
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2 Properties of Generalized Trigonometric Functions

The functions sinpq t, cospq t satisfy the following proposition.

Proposition 2.1. For every t ∈ [0, πpq/2], the following equalities hold:

(i) (sinpq t)
′ = cospq t, (ii) (cospq t)

′ = −q

p
(sinpq t)

q−1(cospq t)
−p+2,

(iii) (cospq t)
p + (sinpq t)

q = 1, (iv) cospq t =
(
sinq∗p∗

(πq∗p∗

πpq

(πpq

2
− t

)))p∗−1

.

Proof. (i) By differentiating y = sinpq t and by Eq.(1.3), we obtain that

dy

dt
=

1

dt/dy
=

1(
1− yq

)−1/p
=

(
1− (sinpq t)

q)1/p = cospq t.

(iii) By Eq.(1.3), the equality is obvious.
(ii) By differentiating both sides of (iii), the equality is proved.
(iv) By putting x = cospq t to (ii), we obtain that

dx

dt
= −q

p

(
1− xp

)1/q∗
x−p+2.

By the method of separation of variables, we obtain that

πpq

2
− t =

p

q

∫ x

0

(
1− up

)−1/q∗
up−2du

=
p∗

q

∫ xp−1

0

(
1− vp

∗)−1/q∗
dv

(
v = up−1

)
=
p∗

q
sin−1

q∗p∗

((
cospq t

)p−1
)
. (2.1)

By Eq.(1.2), the equality is proved.

3 Properties of Generalized Pi’s

We know some equalities containing two generalized pi’s as follows:

(a)
πq∗, p∗

πp,q

=
q

p∗
, (b)

πp∗, p

π2,p

= 2−2/p+1. (3.1)

The first equality is already mentioned in Eq.(1.2), and the second can be proved directly
from Legendre Duplication Formula. (It is already pointed out by Takeuchi [5].) In this paper,
we give other relations containing two generalized pi’s.
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Theorem 3.1 ([2]). For every real number p ∈ (1,∞), the following equalities hold:

(i)
π2p∗, 2p

πp∗, p
= 21/p−1, (ii)

πp∗, 2p∗

πp,2p

= (p− 1)22/p−1, (iii)
π2p∗, p∗

π2p,p

= 2−2/p+1.

By putting values to the parameters, we can evaluate the equalities.

Example 3.2. (1) Putting p = 3 or 3/2 gives

π3,6

π3/2,3

=
1

22/3
,

π6,3

π3,3/2

=
1

21/3
. (3.2)

(2) Putting p = 4 or 4/3 gives

π8/3,8

π4/3,4

=
1

23/4
,
π8,8/3

π4,4/3

=
1

21/4
,
π4/3,8/3

π4,8

=
3

21/2
,
π8/3,4/3

π8,4

= 21/2. (3.3)

(3) Putting p = 5 or 5/4 gives

π5/2,10

π5/4,5

=
1

24/5
,
π10,5/2

π5,5/4

=
1

21/5
,
π5/4,5/2

π5,10

=
4

23/5
,
π5/2,5/4

π10,5

= 23/5. (3.4)

The Beta function can be represented by three Gamma functions:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (3.5)

For the Gamma function, there is a formula called Legendre Duplication Formula:

Γ(2z) =
22z−1

√
π

Γ(z)Γ(z + 1/2). (3.6)

By applying Eq.(1.2) and (3.5) to (3.6), we can prove the second of (3.1) as follows:

πp∗, p

π2,p

=

2

p
B
(1
p
,
1

p

)
2

p
B
(1
2
,
1

p

) =

Γ
(1
p

)
Γ
(1
p
+

1

2

)
Γ
(1
2

)
Γ
(2
p

) = 2−2/p+1. (3.7)

We prove Theorem 3.1 in a similar but somewhat complicated way. First, by combining two
copies of (3.6), we deduce the following identity :

Γ(z)Γ(z + 1/2)Γ(2w)

Γ(w)Γ(w + 1/2)Γ(2z)
= 22(w−z). (3.8)

By applying Eq.(3.5) to it, we can deduce many equalities containing two Beta functions
such as the following lemma. However, all such equalities are equivalent to either (i) or (ii)
of the Lemma 3.3. (The equality (iii) is a variant of (ii).)
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Lemma 3.3. The following equalities hold:

(i)
B(1/2 + x, x)

B(2x, 2x)
= 22x, (ii)

B(2x, 1/2− x)

B(1− 2x, x)
= 24x−1,

(iii)
B(1/2 + x, 1− 2x)

B(1− x, 2x)
=

x

1/2− x
2−4x+1.

Proof. (i) z = x, w = 2x into Eq.(3.8), we obtain that

B(1/2 + x, x)

B(2x, 2x)
=

Γ(x)Γ(x+ 1/2)Γ(4x)

Γ(2x)Γ(2x+ 1/2)Γ(2x)
= 22x. (3.9)

(ii) By putting z = 1/2− x, w = x into Eq.(3.8), we obtain that

B(2x, 1/2− x)

B(1− 2x, x)
=

Γ(1/2− x)Γ(1− x)Γ(2x)

Γ(x)Γ(x+ 1/2)Γ(1− 2x)
= 24x−1. (3.10)

(iii) By using Eq.(3.10), we obtain that

B(1/2 + x, 1− 2x)

B(1− x, 2x)
=

Γ(x+ 1)Γ(1− 2x)Γ(x+ 1/2)

Γ(3/2− x)Γ(1− x)Γ(2x)

=
x

1/2− x
.
Γ(x)Γ(x+ 1/2)Γ(1− 2x)

Γ(1/2− x)Γ(1− x)Γ(2x)
=

x

1/2− x
2−4x+1. (3.11)

Proof of Theorem 3.1. By putting x = 1/(2p) into the Lemma 3.3, we obtain that

(i)
π2p∗, 2p

πp∗, p
=

2

2p
B
(
1− 1

2p∗
,
1

2p

)
2

p
B
(
1− 1

p∗
,
1

p

) =

B
(1
2
+

1

2p
,
1

2p

)
2B

(1
p
,
1

p

) = 21/p−1.

(ii)
πp∗, 2p∗

πp,2p

=

2

2p∗
B
(
1− 1

p∗
,
1

2p∗

)
2

2p
B
(
1− 1

p
,
1

2p

) = (p− 1)

B
(1
p
,
1

2
− 1

2p

)
B
(
1− 1

p
,
1

2p

) = (p− 1)22/p−1.

(iii)
π2p∗, p∗

π2p,p

=

2

p∗
B
(
1− 1

2p∗
,
1

p∗

)
2

p
B
(
1− 1

2p
,
1

p

) = (p− 1)

B
(1
2
+

1

2p
, 1− 1

p

)
B
(
1− 1

2p
,
1

p

) = 2−2/p+1.
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4 Generalized Elliptic Integrals of Four Parameters.

4.1 Generalized Legendre Relation.

Takeuchi [6] defined generalized elliptic integrals of three parameters. In this paper, we define
generalized elliptic integrals of four parameters as follows:

Epqrs(k) =

∫ 1

0

(1− kstq)1/r

(1− tq)1/p
dt, Kpqrs(k) =

∫ 1

0

(1− kstq)1/r−1

(1− tq)1/p
dt.

Obviously, the following equation holds:

Epqrs(0) = Kpqrs(0) =

∫ 1

0

1

(1− tq)1/p
dt =

πpq

2
. (4.1)

The following formula is Generalized Legendre Relations of four parameters.

Theorem 4.1. Let p ∈ (−∞, 0) ∪ (1,∞), q, r ∈ (1,∞). For every k ∈ [0, 1], we denote
k′ = (1− ks)1/s. Then the following equality holds:

Epqrs(k)Kprqs(k
′) +Kpqrs(k)Eprqs(k

′)−Kpqrs(k)Kprqs(k
′) =

πpqπσr

4
, (4.2)

where 1/σ = 1/p− 1/q.

Theorem 4.2. Under the same notations as in Theorem 4.1, The following differential
equalities hold:

(i)
d

dk
Epqrs(k) =

s/r

k

{
Epqrs(k)−Kpqrs(k)

}
,

(ii)
d

dk
Kpqrs(k) =

s/µ

k(1− ks)

{
Epqrs(k)−Kpqrs(k)

}
+

(s/q)ks

k(1− ks)
Kpqrs(k),

(iii)
d

dk
Epqrs(k

′) = − (s/r)ks

k(1− ks)

{
Epqrs(k

′)−Kpqrs(k
′)
}
,

(iv)
d

dk
Kpqrs(k

′) = − s/µ

k(1− ks)

{
Epqrs(k

′)−Kpqrs(k
′)
}
− s/q

k
Kpqrs(k

′),

where 1/µ = 1/q + 1/r − 1/p.

Lemma 4.3. For every k ∈ (0, 1), the following equality holds:∫ 1

0

(1− kstq)1/r−2

(1− tq)1/p
dt =

r∗/µ

1− ks
Epqrs(k) +

{r∗(ks/q − 1/µ)

1− ks
+ 1

}
Kpqrs(k). (4.3)

where r∗ denotes the Holder conjugate of r, that is, 1/r + 1/r∗ = 1.

5



Proof. We can calculate as follows:

d

dt

{
t(1− kstq)1/r−1(1− tq)1−1/p

}
=(1− tq)−1/p(1− kstq)1/r−2

{
(1− kstq)(1− tq) +

q

r∗
kstq(1− tq)− q

p∗
tq(1− kstq)

}
,

=
1

ks
(1− kstq)1/r−2(1− tq)−1/p

{(
1− q

r∗
+

q

p∗
)
(1− kstq)2 +

(
ks −

(
1− q

r∗
+

q

p∗
)

+
q

r∗
(
1− ks

))
(1− kstq)− q

r∗
(
1− ks

)}
,

=
1

ks

{ q

µ
(1− kstq)1/r(1− tq)−1/p +

(
ks − q

µ
+

q

r∗
(1− ks)

)
(1− kstq)1/r−1(1− tq)−1/p

− q

r∗
(1− ks)(1− kstq)1/r−2(1− tq)−1/p

}
. (4.4)

By integrating both sides, we can prove the Lemma 4.3.

Proof of Theorem 4.2. (i) By differentiating the definition of Epqrs(k), we obtain that

d

dk
Epqrs(k) =

s/r

k

∫ 1

0

−kstq(1− kstq)1/r−1

(1− tq)1/p
dt

=
s/r

k

{∫ 1

0

(1− kstq)1/r

(1− tq)1/p
dt−

∫ 1

0

(1− kstq)1/r−1

(1− tq)1/p
dt
}

=
s/r

k
{Epqrs(k)−Kpqrs(k)}.

(ii) By differentiating the definition of Kpqrs(k), we obtain that

d

dk
Kpqrs(k) =

s/r∗

k

∫ 1

0

kstq(1− kstq)1/r−2

(1− tq)1/p
dt

=
s/r∗

k

∫ 1

0

(1− kstq)1/r−2

(1− tq)1/p
dt−

∫ 1

0

(1− kstq)1/r−1

(1− tq)1/p
dt,

by applying Eq.(4.3)

=
s/µ

k(1− ks)
{Epqrs(k)−Kpqrs(k)}+

(s/q)ks

k(1− ks)
Kpqrs(k). (4.5)

(iii) By using Eqs.(i), (ii), we can prove the (iii) as follows:

d

dk
E ′

pqrs(k) =
d

dk′Epqrs(k
′) · dk

′

dk
=

s/r

k′ {Epqrs(k
′)−Kpqrs(k

′)}
(
− ks−1

(k′)s−1

)
,

= − (s/r)ks

k(1− ks)
{E ′

pqrs(k)−K ′
pqrs(k)}.
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(iv)
d

dk
Kpqrs(k

′) =
d

dk′Kpqrs(k
′) · dk

′

dk

=
{ s/µ

k′(1− (k′)s)
{Epqrs(k

′)−Kpqrs(k
′)}+ (s/q)(k′)r

k′(1− (k′)s)
Kpqrs(k

′)
}(−ks−1

(k′)s−1

)
= − s/µ

k(1− ks)
{Epqrs(k

′)−Kpqrs(k
′)} − s/q

k
Kpqrs(k

′).

Hence, we have proved the Theorem 4.2.

Proof Theorem 4.1. Denote L(k) the left-hand side of (4.2). By using Eqs.(i), (ii), (iii) and
(iv) of Theorem 4.2, we obtain that,

d

dk
L(k) =

d

dk
Epqrs(k) ·Kprqs(k

′) + Epqrs(k) ·
d

dk
Kprqs(k

′) +
d

dk
Kpqrs(k) · Eprqs(k

′)

+Kpqrs(k) ·
d

dk
Eprqs(k

′)− d

dk
Kpqrs(k) ·Kprqs(k

′)−Kpqrs(k) ·
d

dk
Kprqs(k

′)

=
s/r

rk
{Epqrs(k)−Kpqrs(k)}Kprqs(k

′)

− s/µ

k(1− ks)
Epqrs(k){Eprqs(k

′)−Kprqs(k
′)} − (s/r)

k
Epqrs(k)Kprqs(k

′)

+
s/µ

k(1− ks)
{Epqrs(k)−Kpqrs(k)}Eprqs(k

′) +
(s/q)ks

k(1− ks)
Kpqrs(k)Eprqs(k

′)

− (s/q)ks

k(1− ks)
Kpqrs(k){Eprqs(k

′)−Kprqs(k
′)}

− s/µ

k(1− ks)
{Epqrs(k)−Kpqrs(k)}Kprqs(k

′)− (s/q)ks

k(1− ks)
Kpqrs(k)Kprqs(k

′)

+
s/µ

k(1− ks)
Kpqrs(k){Eprqs(k

′)−Kprqs(k
′)}+ (s/r)

k
Kpqrs(k)Kprqs(k

′) = 0. (4.6)

So the function L(k) is a constant.

We estimate the following two terms:

Kpqrs(k)− Epqrs(k) =

∫ 1

0

kstq(1− kstq)1/r−1

(1− tq)1/p
dt

≦
∫ 1

0

ks(1− ks)1/r−1

(1− tq)1/p
dt =

πpq

2
ks(1− ks)1/r−1,

Kprqs(k
′) =

∫ 1

0

{1− (1− ks)tr}1/q−1

(1− tr)1/p
dt

≦
∫ 1

0

ks(1/q−1)

(1− tr)1/p
dt =

πpr

2
ks(1/q−1). (4.7)
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By above inequalities, we have that

0 ≦ {Kpqrs(k)− Epqrs(k)}Kprqs(k
′) ≦ πpqπpr

4
ks/q(1− ks)1/r−1. (4.8)

By the sandwich rule, the center term of Eq.(4.8) vanishes as k → 0. Thus we obtain that

lim
k→0

L(k) = lim
k→0

{Kpqrs(k)Eprqs(k
′)− {Kpqrs(k)− Epqrs(k)}Kprqs(k

′)}

= Kpqrs(0)Eprqs(1). (4.9)

Hence, we have proved the Theorem 4.1.

4.2 Differential Equations

Theorem 4.4. The functions y = Kpqrs(k) and z = Kpqrs(k
′) respectively satisfy

k(1− ks)
d2y

dk2
+
{(

1 +
s

q
− s

p

)
−

(
1 + s+

s

q
− s

r

)
ks
}dy

dk
− s2

q

(
1− 1

r

)
ks−1y = 0. (4.10)

k(1− ks)
d2z

dk2
+
{(

1− s

r
+

s

p

)
−

(
1 + s+

s

q
− s

r

)
ks
}dz

dk
− s2

q

(
1− 1

r

)
ks−1z = 0. (4.11)

Proof of Theorem 4.4. For Eq.(4.10), put y = Kpqrs(k) and x = Epqrs(k) into (i) and (ii) of
Theorem 4.2, we obtain that

dx

dk
=

s/r

k
(x− y), (4.12)

k(1− ks)
dy

dk
=

s

µ
(x− y) +

s

q
ksy. (4.13)

By differentiating both sides of Eq.(4.13), we obtain that

(1− (s+ 1)ks)
dy

dk
+ k(1− ks)

d2y

dk2
=

s

µ

(dx
dk

− dy

dk

)
+

s

q
ks dy

dk
+

s2

q
ks−1y. (4.14)

By putting Eq.(4.13) into (4.12), we have that

dx

dk
=

µ

r
(1− ks)

dy

dk
− µs

qr
ks−1y. (4.15)

By putting Eq.(4.15) into (4.14), we have proved Eq.(4.10).

Again for Eq.(4.11), put z = Kpqrs(k
′) and x = Epqrs(k

′) into (iii) and (iv) of Theorem
4.2, we obtain that

dx

dk
= − (s/r)ks

k(1− ks)
(x− z), (4.16)

k(1− ks)
dz

dk
= − s

µ
(x− z)− s

q
(1− ks)z. (4.17)
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By differentiating both sides of Eq.(4.17) with respect to k, we obtain that(
1− (s+ 1)ks

)dz
dk

+ k(1− ks)
d2z

dk2
= − s

µ

(dx
dk

− dz

dk

)
+

s2

q
ks−1z − s

q
(1− ks)

dz

dk
. (4.18)

By putting Eq.(4.17) into (4.16), we have that

dx

dk
=

µ

r
ks dz

dk
+

µs

qr
ks−1z. (4.19)

By putting Eq.(4.19) into (4.18), we have proved Eq.(4.11).

Corollary 4.5. For every p, s ∈ (1,∞), the function y = Kppps(k) and z = Kppps(k
′) satisfy

the following differential equation:

k(1− ks)
d2y

dk2
+
(
1− (1 + s)ks

)dy
dk

− s2(p− 1)

p2
ks−1y = 0. (4.20)

Remark. By putting x = ks, we can translate (4.10) into the following equation:

x(1− x)
d2y

dx2
+
{( 1

p∗
+

1

q

)
−

(
1 +

1

q
+

1

r∗

)
x
}dy

dx
− 1

qr∗
y = 0. (4.21)

It is Gauss hyper-geometric equation. So we obtain that

Kpqrs(k) =
πpq

2
F
(1
q
,
1

r∗
,
1

p∗
+

1

q
, ks

)
, (4.22)

where F (a, b, c, x) is Gauss hyper-geometric function.

5 Similar Results to Salamin-Brent Formula

5.1 Similar Results to Gauss AGM Theorem

Gauss found an important formula concerning elliptic integrals and arithmetic-geometric
mean.

Theorem 5.1 (Gauss). For a0 ≧ b0 > 0, we define two sequences {an} and {bn} as follows:

an+1 =
an + bn

2
, bn+1 =

√
anbn. (5.1)

Then two sequences {an} and {bn} converge to the same limit. We denote it by M2(a0, b0)
and call the arithmetic-geometric mean (AGM) of a0 and b0. Then the following formula
holds:

1

a0
K2222

( c0
a0

)
=

π/2

M2(a0, b0)
. (5.2)
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J. M. Borwein and P. B. Borwein [4] found two formulas which can give analogous results to
Gauss’s AGM Formula. Recently, Takeuchi [6], [7] made their theorems those of generalized
pi’s.

Theorem 5.2 (Borwein-Takeuchi). For a0 ≧ b0 > 0, we define three sequences {an}, {bn}
and {cn} as follows:

an+1 =
an + 2bn

3
, cn+1 =

an − bn
3

, b3n = a3n − c3n. (5.3)

Then two sequences {an} and {bn} converge to the same limit. We denote it by M3(a0, b0).
Then the following formula holds:

1

a0
K3333

( c0
a0

)
=

π3/2

M3(a0, b0)
. (5.4)

Theorem 5.3 (Borwein-Takeuchi). For a0 ≧ b0 > 0, we define three sequences {an}, {bn}
and {cn} as follows:

an+1 =
an + 3bn

4
, cn+1 =

an − bn
4

, b2n = a2n − c2n. (5.5)

Then two sequences {an} and {bn} converge to the same limit. We denote it by A4(a0, b0).
Then the following formula holds:’

1
√
a0

K4442

( c0
a0

)
=

π4/2√
A4(a0, b0)

. (5.6)

Lemma 5.4. Two sequences {an} and {bn} defined by Eq.(5.5) converge to the same limit.

Proof. From definition of {bn}, we know that bn ≦ an for every n. From this inequality we
have that

an+1 − an = −3

4
(an − bn) ≦ 0. (5.7)

and

b2n+1 − b2n = a2n+1 − c2n+1 − b2n =
1

2
bn(an − bn) ≧ 0. (5.8)

So we obtain that

b0 ≦ b1 ≦ b2 ≦ .... ≦ bn ≦ an ≦ ... ≦ a2 ≦ a1 ≦ a0 (5.9)

Moreover, we can calculate as following :

0 ≦ an+1 − bn+1 ≦
1

4
(an − bn). (5.10)

10



By repeating Eq.(5.10), we obtain that

0 ≦ an − bn ≦
(1
4

)n

(a0 − b0). (5.11)

By Sandwich rule, the center term of Eq.(5.11) converges to zero. By Nested Interval Theo-
rem, two sequences {an} and {bn} converge to the same limit.

Lemma 5.5. For every integer k (0 ≦ k ≦ n), we estimate that cn ≦ 8b0

( ck
8b0

)2n−k

.

Proof. We can calculate as follows:

cn+1 =
an − bn

4
=

a2n − b2n
4(an + bn)

≦ c2n
8b0

. (5.12)

By repeating Eq.(5.12), we can estimate cn as follows:

cn ≦ 8b0

( ck
8b0

)2n−k

.

Hence, we have proved Lemma 5.5.

5.2 Salamin-Brent-Like Formula

In 1985-86, Salamin and Brent independently found a fast convergence formula for computing
the value of π. The following is the Salamin-Brent Formula.

Theorem 5.6 (Salamin-Brent Formula). Let a0 = 1 and b0 = 1/
√
2, then

π =
2
(
M2

(
1, 1/

√
2
))2

1

2
−

∞∑
j=1

2j(a 2
j − b 2j )

,

where {an} and {bn} are the sequences defined by Eq.(5.1).

Recently, Takeuchi [5], [7] found two Salamin-Brent-like formulas for π3 and π4.

Theorem 5.7 (Takeuchi [5]). Let a0 = 1 and b0 = 1/21/3, then

π3 =
2
(
M3

(
1, 1/21/3

))2
1− 2

∞∑
j=1

3j(aj + cj)cj

,

where {an}, {bn} and {cn} are the sequences defined by Eq.(5.3).
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Theorem 5.8 (Takeuchi [7]). Let a0 = 1 and b0 = 1/
√
2, then

π4 =
2A4

(
1, 1/

√
2
)

1−
∞∑
j=0

2j(aj − bj)

,

where {an} and {bn} are the sequences defined by Eq.(5.5).

The statement of the above result is different from that of Takeuchi [7]. However, it is the
same. In the past few months, the author has tried to find Salamin-Brent-like formula for
another πpq. Unfortunately, I could not find it. However, I found a simpler proof of Theorem
5.8.

5.3 Proof of Theorem 5.8

To prove Theorem 5.8, we consider the case when p = q = r = 4, s = 2. That is,

K4442(k) =

∫ 1

0

(1− k2t4)−3/4(1− t4)−1/4dt,

E4442(k) =

∫ 1

0

(1− k2t4)1/4(1− t4)−1/4dt. (5.13)

From now, we abbreviate the suffices of K4442 and E4442. By Theorem 4.1, we obtain the
following corollary .

Corollary 5.9. For every k ∈ (0, 1), we denote k′ =
√
1− k2. Then the following equality

holds:
E(k)K(k′) +K(k)E(k′)−K(k)K(k′) =

π4

2
.

Lemma 5.10. For every real number k ∈ (0, 1), the following equalities hold:

(i) K(k) =
1√

1 + 3k
K(m′), where m =

1− k

1 + 3k
.

(ii) E(k) =

√
1 + 3k

2
E(m′) +

1− k

2
√
1 + 3k

K(m′).

Proof. (i) Put y = K(m′). Then by Corollary 4.5, y satisfies the following equality:

m(1−m2)
d2y

dm2
+ (1− 3m2)

dy

dm
− 3

4
my = 0. (5.14)
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Put z =
1

(1 + 3k)1/2
y, that is y = (1 + 3k)1/2z. Then we can calculate as follows:

dy

dm
=

d

dk
{(1 + 3k)1/2)z} · 1

dm/dk
= −1

4

{
(1 + 3k)5/2

dy

dk
+

3

2
(1 + 3k)3/2z

}
, (5.15)

d2y

dm2
=

1

16
(1 + 3k)3

{
(1 + 3k)3/2

d2z

dk2
+ 9(1 + 3k)1/2

dz

dk
+

27

4
(1 + 3k)−1/2z

}
. (5.16)

By substituting Eqs.(5.15), (5.16) into Eq.(5.14), we obtain that

1

2
(1 + 3k)3/2

{
k(1− k2)

d2z

dk2
+ (1− 3k2)

dz

dk
− 3

4
kz

}
= 0. (5.17)

So z = z(k) satisfies the above differential equation. By Corollary 4.5, there are two solution
K(k) and K(k′). Thus we can write down z(k) = c1K(k) + c2K(k′). Since we have that

z(0) = K(0) =
π4

2
and K(+0) = ∞, we have that c1 = 1, c2 = 0. Hence we have proved (i).

(ii) By differentiating both sides of (i) with respect to k, we obtain that

d

dk
K(k) = −3

2
(1 + 3k)−3/2K(m′) + (1 + 3k)−1/2 d

dk
K(m′).k (5.18)

By using Theorem 4.2 we obtain that

1

2k(1− k2)
{E(k) + (1− k2)K(k)}

= −3

2
(1 + 3k)−3/2K(m′) +

1

2k(1− k2)

{(1 + 3k)1/2

2
E(m′)− 1− k2

2(1 + 3k)3/2
K(m′)

}
.

By using (i), we have proved (ii).

By putting k =
cn+1

an+1

into Lemma 5.10, we obtain lemma as following:

Lemma 5.11. If {an} and {cn} are the sequences defined by Eq.(5.5), then the following

equalities hold:

(i)
1

√
an+1

K
( cn+1

an+1

)
=

1
√
an

K
( cn
an

)
,

(ii) 2
√
an+1E

( cn+1

an+1

)
=

√
anE

( cn
an

)
+

bn√
an

K
( cn
an

)
.

Theorem 5.12. If {an}, {bn} and {cn} are the sequences defined by Eq.(5.5) and a0 = a,
b0 = b, c0 = c. Then the following formula holds:
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(i)
1√
a
K
( c
a

)
=

π4/2√
A4(a, b)

,

(ii) E
( c
a

)
=

{
1− 1

a

∞∑
j=1

2jcj

}
K
( c
a

)
.

Proof. (i) By repeating Lemma (5.11-i), and taking limit n → ∞, we obtain that

1√
a
K
( c
a

)
= lim

n→∞

1
√
an

K
( cn
an

)
=

1√
A4(a, b)

K(0) =
π4/2√
A4(a, b)

. (5.19)

(ii) By using Lemma (5.11-ii), we obtain that

√
a0

{
E
( c0
a0

)
−K

( c0
a0

)}
= 2

√
a1

{
E
( c1
a1

)
−K

( c1
a1

)}
+
{
2

a1√
a0

−
√
a0 −

b0√
a0

}
K
( c0
a0

)
= 2

√
a1

{
E
( c1
a1

)
−K

( c1
a1

)}
− 2

c1√
a0

K
( c0
a0

)
.

By repeating above equation, we obtain that

√
a
{
E
( c
a

)
−K

( c
a

)}
= 2n

√
an

{
E
( cn
an

)
−K

( cn
an

)}
− 1√

a

n∑
j=1

2jcjK
( c
a

)
.

On the other hand, we have that

2n
√
an

{
K
( cn
an

)
− E

( cn
an

)}
= 2n

√
an

∫ 1

0

(cn/an)
2t4

(1− t4)1/4(1− (cn/an)2t4)3/4
dt

≦ 2nc2n

b
3/2
n

∫ 1

0

(1− t4)−1/4dt =
π42

nc2n

2b
3/2
n

. (5.20)

By the above equality, we have that

0 ≦ 2n
√
an

{
K
( cn
an

)
− E

( cn
an

)}
≦ π42

nc2n

2b
3/2
n

. (5.21)
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By Lemma 5.5, we obtain that

π42
nc2n

2b
3/2
n

≦ π42
5b

1/2
0 2n

( ck
8b0

)2n−k+1

. (5.22)

If we take k sufficiently large, we have that
ck
8b0

≦ 1

8
. If we take n sufficiently large, we

have that 2n−k+1 ≧ n. So the right-hand side of Eq.(5.22) can be estimated from above by

π4b
1/2
0 2−2n+5. By Sandwich Rule, 2n

√
an

{
K
( cn
an

)
− E

( cn
an

)}
vanishes when n → ∞. Hence

the formula (ii) is proved.

Proof of Theorem 5.8. By putting k = c/a = 1/
√
2 , we have that k′ = 1/

√
2. By putting

them into Corollary 5.9 we obtain that

2K
( 1√

2

)
E
( 1√

2

)
−
(
K
( 1√

2

))2

=
π4

2
. (5.23)

By Theorem 5.12, we obtain that

K
( 1√

2

)
=

π4/2√
A4

(
1,

1√
2

) , E
( 1√

2

)
=

{
1−

∞∑
j=1

2jcj

}
K
( 1√

2

)
. (5.24)

By substituting Eq.(5.24) into (5.23), we obtain that{
1− 2

∞∑
j=1

2jcj

}
K
( 1√

2

)2

=
π4

2
.

So Theorem 5.8 is proved.
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