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ASYMPTOTIC FORMS OF SOLUTIONS OF PERTURBED
HALF-LINEAR ORDINARY DIFFERENTIAL EQUATIONS

Sokea Luey and Hiroyuki Usami

Abstract. Asymptotic forms of solutions of half-linear ordinary differential
equation

(
|u′|α−1u′

)′
= α
(

1+b(t)
)
|u|α−1u are investigated under a smallness

condition and some signum conditions on b(t). When α = 1, our results reduce
to well-known ones for linear ordinary differential equations.

1. Introduction

Let us consider the following quasilinear ordinary differential equation near +∞:

(HL) (|u′|α−1u′)′ = α
(
1 + b(t)

)
|u|α−1u .

Here we assume that, α > 0 is a constant, and b ∈ C[0,∞). A C1−function u
defined near +∞ is called a solution of equation (HL) if |u′|α−1u′ is of class C1,
and (HL) is satisfied for all sufficiently large t. When α = 1 equation (HL) reduces
to the linear equation

(L) u′′ =
(
1 + b(t)

)
u .

So, equations of the type (HL) can be regarded as generalizations of linear equations.
In fact for a solution u of (HL) and a constant C, Cu is also a solution of (HL);
however, the sum of two solutions of (HL) is not always a solution of (HL). By
these facts, equations of such types are often called half-linear equations.

Our main aim of the paper is to study the following problem:

Problem. When b(t) is small, in some sense, near +∞, what are the asymptotic
forms of solutions of (HL)?

To get an insight into our problem, we notice the following two facts.

Fact 1.1. Let
∫∞ |b(t)|dt < ∞. Then linear equation (L) has two independent

solutions u1 and u2 with the asymptotic forms

u1(t) ∼ et and u2(t) ∼ e−t as t→∞ ,
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respectively, and so every nontrivial solution u of (L) has the asymptotic form

u(t) ∼ cet or u(t) ∼ ce−t as t→∞ ,

for some constant c 6= 0. See for example [1, 2, 4]. (There are many refinements of
this property.)

Fact 1.2. Let b(t) ≡ 0 in equation (HL), that is, let us consider the simple
half-linear equation

(HL0) (|u′|α−1u′)′ = α|u|α−1u .

We can solve explicitly this equation. All nontrivial solutions are given by the
functions

cet , ce−t with c = constant 6= 0 ,
and the two 2-parameter families of functions generated by generalized hyperbolic
sine functions and generalized hyperbolic cosine functions. Further, every nontrivial
solution u belonging to these two families has the asymptotic form u(t) ∼ cet as
t→∞ for some constant c 6= 0 See in detail [3, Chapter 1].

From these observations we conjecture that, if b(t) is sufficiently small near +∞,
then every nontrivial solution u of (HL) has the asymptotic forms

u(t) ∼ cet or u(t) ∼ ce−t as t→∞ ,

for some constant c 6= 0. In this paper we give partial affirmative answer to this
conjecture. In fact, we can show that our conjecture is true under signum conditions
on b(t).

To state our results we rewrite equation (HL) into the following two equations:

(|u′|α−1u′)′ = α(1 + p(t))|u|α−1u ,(HL+)
(|u′|α−1u′)′ = α(1− p(t))|u|α−1u .(HL−)

In the sequel we assume the next conditions:

(A1) α > 0 is a constant;
(A2) p ∈ C[0,∞); p(t) satisfies p(t) ≥ 0 for (HL+), and p(t) satisfies

0 ≤ p(t) ≤ 1 for (HL−);
(A3)

∫∞
p(t)dt <∞.

Our main result follows:

Theorem 1.3. Under assumptions (A1)–(A3), every nontrivial solution u of
(HL+) and (HL−) has the asymptotic form

u(t) ∼ cet or u(t) ∼ ce−t as t→∞ ,

for some constant c 6= 0.

Even if the positivity of p(t) is violated, we conjecture that Theorem 1.3 is still
valid by assuming

∫∞ |p(t)|dt <∞ alone. To treat equations (HL±) under such a
condition will be the theme of our future works.
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The difficulty in proving Theorem 1.3 comes from mainly the following two
facts: (i) The set of all solutions of a half-linear equation is not a linear space; (ii)
There is not so-called variation of constants formulas for half-linear equations. So
in the present paper we will give the proof of main results without employing the
well-known results concerning the properties of linear equations.

This paper is organized as follows. In Section 2 we collect preparatory results
which will be employed later. In Section 3 we give the proof of our main result
Theorem 1.3. More precisely, in Section 3.1 we determine the asymptotic form
of increasing positive solutions of (HL±), while in Section 3.2 we determine that
of positive decreasing solutions. The proof of Theorem 1.3 will be completed by
unifying these results.

2. Preparatory results

In this section we collect preparatory results which play important roles to prove
main results.

The following simple pointwise inequalities are used to estimate several integrals
in the sequel.

Lemma 2.1. (i) Let β ≥ 1. Then (1− x)β ≥ 1− βx for x ∈ [0, 1].
(ii) Let 0 < β ≤ 1. Then (1− x)β ≥ 1− x for x ∈ [0, 1].
(iii) Let 0 < β ≤ 1. Then (1 + x)β ≤ 1 + x for x ≥ 0.
(iv) Let β ≥ 1 and M > 0 be a constant. Then there is a constant K = KM > 0
such that

(1 + x)β ≤ 1 +Kx for x ∈ [0,M ] .
(In fact, we may take K = [(1 +M)β − 1]/M .)

Lemma 2.2. Every nontrivial solution u(t) of (HL±) is of constant sign near
+∞.

Proof. Suppose the contrary that u(t) changes the sign infinitely many times near
+∞. Then we can find two points T1, T2 > 0 satisfying T1 < T2,

u(T1) = 0 , u′(T1) > 0 , u′(T2) = 0 , and u(t) > 0 in (T1, T2) .
Then an integration on [T1, T2] of (HL±) gives

−|u′(T1)|α−1u′(T1) = α

∫ T2

T1

(1± p(s))u(s)αds > 0 ,

which is an obvious contradiction. The proof is complete. �

Lemma 2.3. Every nontrivial solution u(t) of (HL±) satisfies exactly one of the
following two properties for all sufficiently large t:
(i) |u′(t)| ↑ +∞ (and therefore |u(t)| ↑ +∞) as t→∞;
(ii) |u′(t)|, |u(t)| ↓ 0 as t→ +∞.

Since u(t) is a solution of (HL+) (or (HL−)) if and only if so is −u(t), below
we will consider mainly (eventually) positive solutions of (HL+) (or (HL−)).
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Proof of Lemma 2.3. Let u(t) be an eventually positive solution of (HL±).
Since

(
|u′|α−1u′

)′
> 0, the function |u′|α−1u′, that is, u′(t) increases.

Let u′(t) ↑ ∞. Then the assertion (i) holds.
Let u′(t) ↑ c > 0, a constant. Then obviously u(t) ∼ ct as t→∞. An integration

of (HL±) on [T, t], where T is sufficiently large, gives(
u′(t)

)α − (u′(T ))α = α

∫ t

T

(
1± p(s)

)
u(s)αds

≥ c1

∫ t

T

sα
(
1− p(s)

)
ds

for some constant c1 > 0. By assumption (A3) we have∫ t

T

sα
(
1− p(s)

)
ds ≥

∫ t

T

sαds− tα
∫ t

T

p(s) ds

≥ 1
α+ 1(tα+1 − Tα+1)−

(∫ ∞
T

p(s) ds
)
tα →∞ as t→∞ .

This means u′(t) → ∞ as t → ∞, a contradiction. So the case that u′(t) → c ∈
(0,∞) does not occur.

Let u′(t) ↑ 0. Since u(t) > 0, the solution u(t) decreases; and so there is a
nonnegative limit l ≡ limt→∞ u(t). To see l = 0 suppose the contrary that l > 0.
Then an integration of (HL±) on [T, t], T being sufficiently large, gives

[−u′(T )]α ≥ [−u′(T )]α − [−u′(t)]α

= α

∫ t

T

(
1± p(s)

)
u(s)αds

≥ αlα
∫ t

T

(
1− p(s)

)
ds

≥ αlα
(
t− T −

∫ ∞
T

p(s) ds
)
→∞ as t→∞ .

This is a contradiction. So limt→∞ u(t) = 0; therefore assertion (ii) holds in this
case.

Since u is a positive solution, the case that u′(t) ↑ c for some negative constant
c does not occur. The proof is complete. �

The following comparison principle will be used in many places. The proof was
found, for example, in [5, Lemma 4.1].

Lemma 2.4. Suppose that p1, p2 ∈ C[t0, t1] and 0 < p1(t) ≤ p2(t) on [t0, t1]. Let
ui, i = 1, 2, be solutions on [t0, t1] of the equations

(|u′i|α−1ui)′ = pi(t)|ui|α−1ui , i = 1, 2 ,
respectively, satisfying

u1(t0) ≤ u2(t0) and u′1(t0) < u′2(t0) .
Then u1(t) < u2(t) and u′1(t) < u′2(t) on (t0, t1].
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3. Proof of the main result

In this section we give the proof of Theorem 1.3. To this end, we consider
asymptotic forms of solutions of the two types indicated in Lemma 2.3 separately.

3.1. Asymptotic form of increasing positive solutions of (HL±). As a first
step we treat eventually positive solutions u of (HL±) satisfying the property (i)
of Lemma 2.3 : u′(t) ↑ ∞ and u(t) ↑ ∞ as t→∞.

Lemma 3.1. (i) Let u be a positive solution of (HL+) on [T,∞) satisfying the
property (i) of Lemma 2.3 for sufficiently large T > 0. Then
(1) u(t) ≥ cet , t ≥ T , for some constant c > 0 .
(ii) Let u be a positive solution of (HL−) on [T,∞) satisfying the property (i) of
Lemma 2.3 for sufficiently large T > 0. Then
(2) u(t) ≤ cet , t ≥ T , for some constant c > 0 .

Proof. We give only the proof of (i), because (ii) can be proved similarly.
We may assume that u′(t) > 0 on [T,∞). Let c > 0 be a sufficiently small

number such that
u(T ) > ceT and u′(T ) > ceT .

Put z(t) = cet, t ≥ T . Then z satisfies u(T ) > z(T ), u′(T ) > z′(T ), and
(|z′|α−1z′)′ = α|z|α−1z , t ≥ T .

By Lemma 2.4 we obtain (1) as desired. �

Lemma 3.2. Let u be a positive solution of (HL+) or (HL−) satisfying the
property (i) of Lemma 2.3. Then the function u(t)/et is eventually monotone near
+∞.

Proof. Let u(t), u′(t) > 0 on [T,∞) and put v(t) = u(t)/et. We will show that
v′(t) ≥ 0 near ∞, or v′(t) ≤ 0 near ∞, by contradiction.

If this is not the case, then there are three points t1, t2 and t3 (T < t1 < t2 < t3)
satisfying

v′(t1)v′(t2) < 0 and v′(t1)v′(t3) > 0 .
We can assume that

v′(t1) > 0, v′(t2) < 0 and v′(t3) > 0 .
Then there are two points τ1 ∈ (t1, t2) and τ2 ∈ (t2, t3) such that

v′(τ1) = 0 , v′′(τ1) ≤ 0 , and
v′(τ2) = 0 , v′′(τ2) ≥ 0 .(3)

On the other hand, note that v(t) satisfies v + v′ > 0, t ≥ T , and[(
v + v′

)α]′ + α
(
v + v′

)α = α
(
1± p(t)

)
vα ;

that is
(4) v′′ + 2v′ + v =

(
1± p(t)

)(
v + v′

)1−α
vα .
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Let us divide the proof into two cases.

Case 1. The case where p(t) > 0, t ∈ [T, t3]. By equation (4), v′′(τi) =
±p(τi)v(τi), i = 1, 2, 3. So v′′(τ1) and v′′(τ2) have the same signs, which is an
obvious contradiction to the properties (3).

Case 2. The case where p(t) ≥ 0, t ∈ [T, t3]. Let {pε(t)}ε>0 be a family of
continuous functions of (t, ε) ∈ [T, t3]× (0, ε0], ε0 = const > 0, satisfying

pε(t) > p(t) on [T, t3] , and lim
ε→+0

(
max
[T,t3]

(
pε(t)− p(t)

))
= 0 .

Further, let z = zε be the solution of the initial value problem

(5)
{
z′′ + 2z′ + z =

(
1± pε(t)

)
(z + z′)1−αzα ,

z(T ) = v(T ) , z′(T ) = v′(T ) .

By the continuous dependence on the parameter [6], for sufficiently small ε > 0, z =
zε(t) exists at least for t ∈ [T, t3], z(t) > 0, z(t) + z′(t) > 0 for t ∈ [T, t3], and

lim
ε→+0

(
max
[T,t3]

∣∣z′ε(t)− v′(t)∣∣) = 0 .

Let m > 0 be a sufficiently small number satisfying

v′(t1) > m > 0 , v′(t2) < −m < 0 and v′(t3) > m > 0 .

For sufficiently small ε > 0, we have

|z′ε(t)− v′(t)| < m/2 for t ∈ [T, t3] ,

which implies that

z′ε(t1) > v′(t1)− (m/2) > m/2 > 0 ,
z′ε(t2) < v′(t2) + (m/2) < −m/2 < 0 , and
z′ε(t3) > v′(t3)− (m/2) > m/2 > 0 .

By noting that z = zε satisfies equation (5) and pε(t) > 0 on [T, t3], we find that
this is a contradiction as in Case 1.

The proof is complete. �

Proposition 3.3. Let u be a positive solution of (HL+) or (HL−) satisfying the
property (i) of Lemma 2.3. Then

(6) u(t) ∼ cet as t→∞ for some constant c > 0 .

Proof of Proposition 3.3 for (HL+). By Lemma 3.2 the function u(t)/et is
monotone near +∞. If u(t)/et decreases, then by (i) of Lemma 3.1 we find that
u(t)/et decreases to a positive constant as t→∞; and so (6) holds as desired.

Next let u(t)/et increase near +∞. We may suppose that u′ > 0 and u(t)/et
increases on [T,∞). An integration of both sides of (HL+) on [T, t] gives

u′(t)α = u′(T )α + α

∫ t

T

(1 + p(s))u(s)αds .
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Since u(t)/et increases, we get from the above

u′(t)α ≤ u′(T )α + α
u(t)α

eαt

∫ t

T

(
eαs + eαsp(s)

)
ds

= u′(T )α + α
u(t)α

eαt

[ 1
α

(eαt − eαT ) +
∫ t

T

eαsp(s) ds
]
.

Thus we obtain

u′(t)α ≤ u′(T )α + u(t)α
[
1 + αe−αt

∫ t

T

eαsp(s) ds
]
.(7)

The computation below slightly differs according to the value of α.
Firstly, let α > 1. By the simple inequality

(X + Y )1/α ≤ X1/α + Y 1/α for X,Y ≥ 0 ,
we get from (7)

u′(t) ≤ u′(T ) + u(t)
[
1 + αe−αt

∫ t

T

eαsp(s) ds
]1/α

.

Further, by (iii) of Lemma 2.1 we have

u′(t) ≤ u′(T ) + u(t)
[
1 + αe−αt

∫ t

T

eαsp(s) ds
]
.

By (1) we obtain
u′(t)
u(t) ≤ c1e

−t + 1 + αe−αt
∫ t

T

eαsp(s) ds ,

for some constant c1 > 0. An integration of both sides gives

log u(t)
u(T ) ≤ (t− T ) + c1

∫ t

T

e−sds+ α

∫ t

T

(
e−αs

∫ s

T

eαrp(r) dr
)
ds .

Since ∫ t

T

(
e−αs

∫ s

T

eαrp(r) dr
)
ds = 1

α

∫ t

T

p(s)
(
1− e−α(t−s)) ds

≤ 1
α

∫ ∞
T

p(s) ds <∞ ,

we can get

log u(t)
u(T ) ≤ t+O(1) , as t→∞ ,

which implies that u(t) = O(et) as t→∞. By recalling the assumption that u(t)/et
increases, we find that (6) holds.

Next let 0 < α < 1. From (7) we have

u′(t) ≤ u(t)
[
1 + u′(T )α

u(t)α + αe−αt
∫ t

T

eαsp(s) ds
]1/α

≡ u(t)
(
1 +B(t)

)1/α
.
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Here B(t) is defined naturally by the last equality. Since u(t)/et increases, we find
for some constants c2 and c3 > 0

0 ≤ B(t) ≤ c2e
−αt + αe−αt · eαt

∫ t

T

p(s) ds

≤ c3 + α

∫ ∞
T

p(s) ds <∞ .

Therefore by (iv) of Lemma 2.1 we obtain for some constant K > 0

u′(t) ≤ u(t)
[
1 + Ku′(T )α

u(t)α +Kαe−αt
∫ t

T

eαsp(s) ds
]
.

Dividing the both sides by u(t), and integrating on [T, t], we have

log u(t)
u(T ) ≤ t− T + c2

∫ t

T

e−αs ds+Kα

∫ t

T

(
e−αs

∫ s

T

eαrp(r) dr
)
ds

≤ t+O(1) +K

∫ ∞
T

p(s) ds .

as t→∞. So u(t) = O(et) as t→∞, which implies that (6) holds as before.
This completes the proof. �

Proof of Proposition 3.3 for (HL−). The argument here is parallel to that in
the proof of Proposition 3.3 for (HL+). By Lemma 3.2 the function u(t)/et is
monotone near +∞. If u(t)/et increases, then by (ii) of Lemma 3.1 we find that
u(t)/et increases to a positive constant as t→∞; and so (6) holds as desired.

Next let u(t)/et decrease near +∞. We may suppose that u′ > 0 and u(t)/et
decreases on [T,∞). An integration of both sides of (HL−) on [T, t] gives

u′(t)α = u′(T )α + α

∫ t

T

(1− p(s))u(s)α ds .

Employing the decreasing property of u(t)/et, we get

u′(t)α ≥ α
∫ t

T

(
1− p(s)

)
eαs
[u(s)
es

]α
ds

≥ αu(t)α

eαt

∫ t

T

(
eαs − eαsp(s)

)
ds

= u(t)α
[
1−

(
e−α(t−T ) + αe−αt

∫ t

T

eαsp(s) ds
)]

≡ u(t)α
(
1−B(t)

)
.(8)

Here of course, B(t) is defined naturally by the last equality. Since 0 ≤ p(s) ≤ 1 by
the assumption (A2), we observe that

0 ≤ B(t) ≤ e−α(t−T ) + αe−αt
∫ t

T

eαs ds = 1 , for t ≥ T .
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So by (i) and (ii) of Lemma 2.1 we obtain from (8)

u′(t) ≥ u(t)
[
1− c

(
e−α(t−T ) + αe−αt

∫ t

T

eαsp(s) ds
)]
,(9)

where c > 0 is a constant given by

c =
{

1/α if 0 < α < 1 ;
1 if α > 1 .

As before, we get from (9)

log u(t)
u(T ) ≥ t− T − c

∫ t

T

e−α(s−T ) ds− cα
∫ t

T

e−αs
∫ s

T

eαrp(r) dr ds

= t+O(1) as t→∞ .

So, u(t)/et ≥ c4 > 0 for some constant c4, and we find that (6) holds.
This completes the proof. �

3.2. Asymptotic form of decreasing positive solutions of (HL±). In this
subsection we treat eventually positive solutions u of (HL±) satisfying the property
(ii) of Lemma 2.3: u′(t) ↑ 0 and u(t) ↓ 0 as t→∞.

To state auxiliary results, we consider two equations of the form of (HL±) for a
moment: (

|W ′|β−1W ′
)′ = Q(t)|W |β−1W , t ≥ 0 ,(AQ) (

|w′|β−1w′
)′ = q(t)|w|β−1w , t ≥ 0 .(Aq)

Here we assume that β > 0 is a constant, Q, q ∈ C[0,∞), and they satisfy
Q(t) ≥ q(t) > 0 , t ≥ 0 ,

and ∫ ∞
q(t) dt =∞ .

Let T ≥ 0 and h > 0 be arbitrary numbers. Then by [5, Theorem 5.1], equation
(AQ) has only one positive solution W on [T,∞) satisfying W (T ) = h,W (t) ↓ 0
and W ′(t) ↑ 0 as t→∞. Similarly equation (Aq) has only one positive solution w
on [T,∞) satisfying w(T ) = h, w(t) ↓ 0 and w′(t) ↑ 0 as t → ∞. Such solutions
are often called positive decaying solutions. Note that positive solutions of (HL±)
satisfying the property (ii) of Lemma 2.3 are positive decaying solutions of (HL±).

For example, the positive decaying solution u of the equation(
|u′|β−1u′

)′ = β|u|β−1u ,

passing through the point (T, h) is given by u(t) = he−(t−T ). The following compa-
rison lemma is important to prove our main results.

Lemma 3.4. Let W and w be positive decaying solutions of equation (AQ) and
(Aq) on [T,∞), respectively, passing through the point (T, h), T ≥ 0, h > 0. Then,
W (t) ≤ w(t) for t > T .
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Proof. The proof is done by contradiction. Suppose the contrary that W (t) > w(t)
for some t > T . Then we can find an interval [t0, t1] ⊂ [T,∞) such that

(10) W (t0) = w(t0) , and W (t) > w(t) , in (t0, t1] .

We claim that W ′(τ) > w′(τ) for some τ ∈ [t0, t1]. For, if there are no such points,
that is, if W ′(t) ≤ w′(t) on [t0, t1], then the function W (t)− w(t) is nonincreasing
on [t0, t1]. So W (t)− w(t) ≤W (t0)− w(t0) = 0. However this contradicts to (10).
Hence W ′(τ) > w′(τ) for some τ ∈ [t0, t1].

Since W (τ) > w(τ), Lemma 2.4 implies that W (t) > w(t) for t ≥ τ . From (AQ)
and (Aq) we obtain

|W ′(t)|β−1W ′(t)− |w′(t)|βw′(t)
= |W ′(τ)|β−1W ′(τ)− |w′(τ)|β−1w′(τ)

+
∫ t

τ

[
Q(s)W (s)β − q(s)w(s)β

]
ds

> |W ′(τ)|β−1W ′(τ)− |w′(τ)|β−1w′(τ) , for t ≥ τ .

Since limt→∞W ′(t) = limt→∞ w′(t) = 0, by letting t→∞ we obtain

0 ≥ |W ′(τ)|β−1W ′(τ)− |w′(τ)|β−1w′(τ) > 0 .

This is a contradiction to the definition of τ . This completes the proof. �

Lemma 3.5. (i) Let u be a positive solution of equation (HL+) on [T,∞) satisfying
the property (ii) of Lemma 2.3 for sufficiently large T > 0. Then

(11) u(t) ≤ ce−t , t ≥ T , for some constant c > 0 .

(ii) Let u be a positive solution of equation (HL−) on [T,∞) satisfying the property
(ii) of Lemma 2.3 for sufficiently large T > 0. Then

(12) u(t) ≥ ce−t , t ≥ T , for some constant c > 0 .

Proof. We give only the proof of (i), because (ii) can be proved similarly.
Let z(t) be the positive decaying solution of equation(

|z′|α−1z′
)′ = α|z|α−1z ,

passing through the point (T, u(T )); that is, z(t) = u(T )e−(t−T ). Since α ≤
α
(
1 + p(t)

)
, Lemma 3.4 implies that

u(t) ≤ z(t) ≡ u(T )e−(t−T ) , t ≥ T ,

which show that (11) holds. This completes the proof. �

Lemma 3.6. Let u be a positive solution of (HL−) or (HL+) satisfying the
property (ii) of Lemma 2.3. Then the function u(t)/e−t is eventually monotone.

Proof. Put v = u(t)/e−t, Then v − v′ > 0 and v satisfies

v′′ − 2v′ + v =
(
1± p(t)

)
(v − v′)1−αvα ,
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for large t. If v′(t̃) = 0 for some sufficiently large t̃, then v′′(t̃) = ±p(t̃)v(t̃). So
arguing as in the proof of Lemma 3.2, we find that u(t)/e−t(≡ v(t)) is eventually
monotone. This completes the proof. �

Proposition 3.7. Let u be a positive solution of (HL+) or (HL−) satisfying the
property (ii) of Lemma 2.3. Then

(13) u(t) ∼ ce−t as t→∞ for some constant c > 0 .

Proof of Proposition 3.7 for (HL+). By Lemma 3.6 the function u(t)/e−t is
eventually monotone. If u(t)/e−t increases, then by (i) of Lemma 3.5 we find that
u(t)/e−t converges to a positive constant as t→∞; so (13) holds.

Next let u(t)/e−t decrease near +∞. We may suppose that u′ < 0 and u(t)/e−t
decreases on [T,∞). Since u′(∞) = 0, from (HL+) we have[

− u′(t)
]α = α

∫ ∞
t

(
1 + p(s)

)
u(s)α ds .

The monotonicity of etu(t) implies that

[−u(t)]α = α

∫ ∞
t

e−αs
(
1 + p(s)

)[
esu(s)

]α
ds

≤ αeαtu(t)α
∫ ∞
t

e−αs
(
1 + p(s)

)
ds .

Thus
−u′(t) ≤ u(t)

(
1 + αeαt

∫ ∞
t

e−αsp(s) ds
)1/α

.

Firstly let α > 1. Then by (iii) of Lemma 2.1 we obtain

−u′(t) ≤ u(t)
(

1 + αeαt
∫ ∞
t

e−αsp(s) ds
)
,(14)

that is

−u
′(t)
u(t) ≤ 1 + αeαt

∫ ∞
t

e−αsp(s) ds .

An integration on [T, t] gives

log u(T )
u(t) ≤ t− T + α

∫ t

T

eαs
∫ ∞
s

e−αrp(r) dr ds

≤ t− T + α

∫ ∞
T

eαs
∫ ∞
s

e−αrp(r) dr ds

= t− T +
∫ ∞
T

(
1− e−α(s−T ))p(s) ds

≤ t+O(1) as t→∞ .

Therefore, u(t) ≥ c1e
−t for some constant c1 > 0. Since u(t)/e−t decreases, we find

that (13) holds.
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Secondly, let 0 < α < 1. As before we get (14). Note that,

0 ≤ αeαt
∫ ∞
t

e−αsp(s) ds ≤ αeαt · e−αt
∫ ∞
t

p(s) ds ≤
∫ ∞
T

p(s) ds .

Then, (iv) of Lemma 2.1 implies that for some constant K > 0 we obtain

−u′(t) ≤ u(t)
[
1 +Kαeαt

∫ ∞
t

e−αsp(s) ds
]
.

So arguing as in the case that α > 1, we can get u(t) ≥ c2e
−t for some constant

c2 > 0; and hence (13) holds. This completes the proof. �

Proof of Proposition 3.7 for (HL−). By Lemma 3.6 the function u(t)/e−t is
eventually monotone. If u(t)/e−t decreases, then (ii) of Lemma 3.5 implies that
u(t)/e−t converges to a positive constant as t→∞; and so (13) holds.

Let us consider the case where u(t)/e−t increases. We may suppose that u′ < 0
and u(t)/e−t decreases on [T,∞). From (HL−) we have

[
− u′(t)

]α = α

∫ ∞
t

(
1− p(s)

)
u(s)α ds.

The monotonicity of u(t)/e−t implies that

[
− u′(t)

]α ≥ αeαtu(t)α
∫ ∞
t

(
e−αs − p(s)e−αs

)
ds ,

that is [
− u′(t)

]α ≥ u(t)α
[
1− αeαt

∫ ∞
t

p(s)e−αs ds
]
.

Notice that

αeαt
∫ ∞
t

e−αsp(s) ds ≤ αeαt · e−αt
∫ ∞
t

p(s) ds

≤
∫ ∞
T

p(s) ds ≤ 1 , t ≥ T ,

for sufficiently large T . Therefore (i) and (ii) of Lemma 2.1 implies that,

(15) − u′(t) ≥ u(t)
[
1− cαeαt

∫ ∞
t

e−αsp(s) ds
]
, t ≥ T ,

where c is a constant given by

c =
{

1/α if 0 < α < 1 ;
1 if α > 1 .
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Dividing the both sides of (15) by u(t), and integrating the resulting inequality on
[T, t], we obtain

log u(T )
u(t) ≥ t− T − cα

∫ t

T

(
eαs
∫ ∞
s

e−αrp(r) dr
)
ds

≥ t− T − cα
∫ ∞
T

(
eαs
∫ ∞
s

e−αrp(r) dr
)
ds

= t− T − c
∫ ∞
T

(
1− e−α(s−T ))p(s) ds

= t+O(1) as t→∞ .

Therefore, u(t) ≤ c2e
−t for some constant c2 > 0. Since u(t)/e−t increases, we find

that (13) holds. This completes the proof. �

As stated in the introduction, our main result Theorem 1.3 is a direct consequence
of Propositions 3.3 and 3.7.
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