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Abstract. We consider perturbed half-linear ordinary di¤erential equations near y:

We clarify asymptotic forms of the nontrivial solutions as t ! y under p-th power

integrability conditions imposed on the perturbations. Generalized Riccati equations

associated with the half-linear equations under consideration are employed to prove the

main results.

1. Introduction and statements of main results

Let us consider the quasilinear ordinary di¤erential equations of the

form

ðju 0ja�1
u 0Þ 0 ¼ að1þ bðtÞÞjuja�1

u; tb t0 b 0; ð1Þ

where a > 0 is a constant, and bðtÞ is a continuous function defined on ½t0;yÞ:
The objective of this paper is to determine asymptotic forms of nontrivial

solutions of equation (1).

When a ¼ 1, that is, when equation (1) is reduced into the linear

equation

u 00 ¼ ð1þ bðtÞÞu; tb t0; ð2Þ

such problems have been investigated since the middle of the twentieth century

by many mathematicians. Roughly speaking, if bðtÞ is small near y in some

sense, it can be shown that every nontrivial solution of (2) satisfies

uðtÞ@ cet or uðtÞ@ ce�t as t ! y

for some constant c0 0; see, for example, [1, 3] in details. (Here and in the

sequel the symbol ‘‘f ðtÞ@ gðtÞ as t ! y’’ means that limt!y f ðtÞ=gðtÞ ¼ 1 for

functions f ðtÞ and gðtÞ defined near y:)
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Recently the authors have tried to extend such results to the half-linear

equation (1), and obtained the following theorem:

Theorem 1.0 ([5]). Suppose that

lim
t!y

bðtÞ ¼ 0 and

ðy
jbðtÞjdt < y:

Then, every nontrivial solution u of (1) satisfies

uðtÞ@ cet or uðtÞ@ ce�t as t ! y

for some constant c0 0:

However, when a ¼ 1, it is well known that Theorem 1.0 can be proved

only under the condition
Ðy jbðtÞjdt < y: Therefore we conjecture that the

assumptions of Theorem 1.0 can be weakened. In this paper, we give an

a‰rmative answer to this conjecture.

Let us consider equation (1) under the following conditions:

ðA1Þ a > 0 is a constant;

ðA2Þ bðtÞ is a continuous function on ½t0;yÞ, t0 b 0;

ðA3Þ bðtÞ belongs to Lp½t0;yÞ for some p > 1:

kbkL p½t0;yÞ 1

ðy
t0

jbðtÞjpdt
� �1=p

< y: ð3Þ

We always assume ðA1Þ–ðA3Þ in this paper without further mention.

A C 1-function uðtÞ defined near y is called a solution of (1) if ju 0ja�1
u 0 is

of class C1 and (1) holds. It should be noted that every local solution of

(1) can be prolonged to a global solution existing on ½t0;yÞ; see for example

[2, Chapter 1].

We will show as a first step

Theorem 1.1. Every nontrivial solution of (1) is of constant sign near y:

A function uðtÞ is a solution of (1) if so is �uðtÞ: Therefore by The-

orem 1.1 we may treat mainly eventually positive solutions without loss of

generality.

Our main results are as follows:

Theorem 1.2. Every positive solution u of (1) satisfies exactly one of the

following two asymptotic properties:

(i) u 0 @ u as t ! y;

(ii) u 0 @�u as t ! y:

For p A ð1; 2�, we can get asymptotic forms of positive solutions:
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Theorem 1.3. Let 1 < pa 2: Then every positive solution u of (1) has the

asymptotic form either

uðtÞ ¼ c exp tþ 1

aþ 1

ð t

bðsÞdsþ oð1Þ
� �

as t ! y; ð4Þ

or

uðtÞ ¼ c exp �t� 1

aþ 1

ð t

bðsÞdsþ oð1Þ
� �

as t ! y; ð5Þ

where c > 0 is a constant.

Remark 1.4. As will be shown in Proposition 2.2, surely there are

positive solutions u, respectively, satisfying the properties (i) and (ii) of

Theorem 1.2, and (4) and (5).

Example 1.5. Let us consider the equation

ðju 0ja�1
u 0Þ 0 ¼ a 1þ 1

ts

� �
juja�1

u; tb 1; ð6Þ

where s > 0 is a constant.

(i) By Theorem 1.2, every positive solution u of (6) satisfies either u 0 @ u

or u 0 @�u as t ! y:

(ii) Let 1=2 < s < 1: By Theorem 1.3, every positive solution u of (6)

satisfies either

uðtÞ ¼ c exp tþ t1�s

ðaþ 1Þð1� sÞ þ oð1Þ
� �

as t ! y

or

uðtÞ ¼ c exp �t� t1�s

ðaþ 1Þð1� sÞ þ oð1Þ
� �

as t ! y;

where c > 0 is a constant.

(iii) Let s ¼ 1: By Theorem 1.3, every positive solution u of (6) satisfies

either

uðtÞ ¼ ct1=ðaþ1Þ expðtþ oð1ÞÞ as t ! y

or

uðtÞ ¼ ct�1=ðaþ1Þ expð�tþ oð1ÞÞ as t ! y;

where c > 0 is a constant.
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Notice that, if 0 < sa 1, Theorem 1.0 is not applicable for equation

(6).

This paper is organized as follows. In Section 2 preparatory results are

given. Theorem 1.1 is a simple consequence of the results here. In Section 3

the proof of Theorem 1.2 is given, and in Section 4 the proof of Theorem 1.3

is given.

In [4, 6, 7] analogous results to Theorem 1.0–Theorem 1.3 are obtained

under somewhat di¤erent assumptions.

2. Preparatory results

In this section we give preparatory considerations and results which will be

employed later.

To see Theorem 1.1 we employ the following result which is well known

for the case a ¼ 1:

Proposition 2.1. If equation (1) has a solution of constant sign near y,

then every nontrivial solution of (1) is of constant sign near y:

This proposition is a direct consequence of Sturm’s comparison theorem

for half-linear equations whose proof is found, for example, in [2, Theorem

1.2.3]. We must notice that, actually condition ðA3Þ is not required to see this

proposition. By this proposition, to prove Theorem 1.1, it su‰ces to show the

existence of a positive solution of (1) defined near y: In fact, we can show

more precisely the following:

Proposition 2.2. (i) Equation (1) has a positive solution u satisfying u 0 > 0

near y:

(ii) Equation (1) has a positive solution u satisfying u 0 < 0 near y:

We prepare several lemmas to see the proposition above:

Lemma 2.3. Let s > 0 be a constant. Then

ð t

T

e�sðt�sÞbðsÞds
����

����aCðp; sÞ
ðy
T

jbðsÞjpds
� �1=p

; tbT ð7Þ

for some constant Cðp; sÞ > 0; and similarly

ðy
t

esðt�sÞbðsÞds
����

����aCðp; sÞ
ðy
t

jbðsÞjpds
� �1=p

; tbT ð8Þ

for some constant Cðp; sÞ > 0:
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Proof. Since 1=pþ ðp� 1Þ=p ¼ 1, Hölder’s inequality implies that

e�st

ð t

T

essbðsÞds
����

����a e�st

ð t

T

ðessÞ p=ðp�1Þ
ds

� �ðp�1Þ=p ð t

T

jbðsÞjpds
� �1=p

a
p� 1

ps

� �ðp�1Þ=p ðy
T

jbðsÞjpds
� �1=p

:

So, (7) holds with Cðp; sÞ ¼ ½ðp� 1Þ=ðpsÞ�ðp�1Þ=p:

The estimate (8) can be proved similarly. This completes the proof.

r

To see Proposition 2.2 we seek suitable positive solutions u of equation (1)

of the form

uðtÞ ¼ exp

ð t

T

jwðsÞj1=a�1
wðsÞds

� �
; tbT ; ð9Þ

where T > 0 is some number and wðsÞ is a C1-function. It is easily seen that

uðtÞ given by (9) is a positive solution of (1) if and only if wðtÞ satisfies the

equation

w 0 ¼ að1þ bðtÞÞ � ajwjðaþ1Þ=a; tbT : ð10Þ

We notice that equation (10) is often referred to as the generalized Riccati

equation associated with equation (1); see [2].

To solve equation (10) we employ the Taylor’s expansion of the function

ð1þ xÞðaþ1Þ=a with remainder:

ð1þ xÞðaþ1Þ=a ¼ 1þ aþ 1

a
xþ jðxÞ; jxj < 1; ð11Þ

where jðxÞ is a C 1-function satisfying

jðxÞ ¼ Oðjxj2Þ; and j 0ðxÞ ¼ OðjxjÞ as x ! 0:

More precisely, we can show that there are positive numbers M ¼ MðaÞ > 0

and M1 ¼ M1ðaÞ > 0 satisfying

jjðxÞjaMx2; and jj 0ðxÞjaM1jxj; for jxja 1=2: ð12Þ

Proof (Proof of Proposition 2.2). (i) We will show that equation (10)

has a positive solution wðtÞ near y. In fact, for such a wðtÞ, the function

uðtÞ given by (9) is a positive solution of (1) satisfying u 0ðtÞ ¼ uðtÞwðtÞ1=a > 0,

tbT :
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Further, we put wðtÞ ¼ 1þ zðtÞ: Then by (11) we find that zðtÞ is a

solution of the equation

z 0 þ bz ¼ abðtÞ � ajðzÞ; b ¼ aþ 1; ð13Þ

satisfying 2 > 1þ zðtÞ > 0: Below we solve this equation.

Let z0 A ð0; 1=2� be a su‰ciently small number satisfying

aMz20
b

<
z0

2
and

aM1z0

b
< 1: ð14Þ

Here M and M1 are constants appearing in (12), and b ¼ aþ 1: Further,

take a T ¼ Tðz0Þb t0 so that

a

ð t

T

e�bðt�sÞbðsÞds
����

����a z0=2; tbT : ð15Þ

By Lemma 2.3, there is such a T : Put

Z ¼ z A C½T ;yÞ j kzk1 sup
tbT

jzðtÞja z0

� �
:

Then Z is a nonempty closed subset of BC½T ;yÞ consisting of all bounded

and continuous functions with the supremum norm kzk ¼ suptbT jzðtÞj for z A
BC½T ;yÞ:

We define the operator F : Z ! C½T ;yÞ by

ðFzÞðtÞ ¼ a

ð t

T

e�bðt�sÞbðsÞds� a

ð t

T

e�bðt�sÞjðzðsÞÞds; tbT

for z A Z: Below we will show that F is a contraction mapping from Z into

itself.

To see FðZÞ � Z, let z A Z: Then by (12), (14) and (15) we find that

jðFzÞðtÞja z0

2
þ aM

ð t

T

e�bðt�sÞzðsÞ2ds

a
z0

2
þ aMz20

b
<

z0

2
þ z0

2
¼ z0; tbT :

So FðZÞ � Z:

Next, let z1; z2 A Z: The mean value theorem and (12) imply that

jjðz1ðsÞÞ � jðz2ðsÞÞj ¼ jj 0ðxðsÞÞðz1ðsÞ � z2ðsÞÞj

aM1jxðsÞj � kz1 � z2kaM1z0kz1 � z2k
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for sbT , where xðsÞ is some real number between z1ðsÞ and z2ðsÞ: It follows

that

jFz1ðtÞ �Fz2ðtÞja a

ð t

T

e�bðt�sÞjjðz1ðsÞÞ � jðz2ðsÞÞjds

a aM1z0

ð t

T

e�bðt�sÞds � kz1 � z2k

a
aM1z0

b
kz1 � z2k

for tbT ; and so

kFz1 �Fz2ka
aM1z0

b
kz1 � z2k:

Therefore F is a contraction by (14).

By the contraction principle, F has a unique fixed point z A Z, which

satisfies the integral equation

zðtÞ ¼ a

ð t

T

e�bðt�sÞbðsÞds� a

ð t

T

e�bðt�sÞjðzðsÞÞds; tbT :

We can find easily that zðtÞ is a solution of (13) satisfying

1

2
a 1� z0 a 1þ zðtÞa 1þ z0 a

3

2
; tbT :

So, wðtÞ1 1þ zðtÞ, tbT , is a positive solution of (10).

(ii) As in the proof of (i) it su‰ces to show that equation (10) has a

negative solution wðtÞ near y: Therefore (10) is rewritten into

�w 0 ¼ að�wÞðaþ1Þ=a � að1þ bðtÞÞ:

By putting wðtÞ ¼ �1� zðtÞ, and employing (11) it su‰ces to show the exis-

tence of a solution z of the equation

z 0 � bz ¼ �abðtÞ þ ajðzÞ; b ¼ aþ 1;

satisfying �1� zðtÞ < 0:

Let z0 A ð0; 1=2� be a small number satisfying (14), and T ¼ Tðz0Þb t0 be

a large number satisfying

a

ðy
t

e�bðs�tÞbðsÞds
����

����a z0

2
; tbT :
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By Lemma 2.3 there is such a T : Put

Z ¼ fz A C½T ;yÞ j kzka z0g:

Then as in the proof of (i) we can show that there is a unique solution z A Z

of the integral equation

zðtÞ ¼ a

ðy
t

e�bðs�tÞbðsÞds� a

ðy
t

e�bðs�tÞjðzðsÞÞds; tbT ;

by the contraction principle. It is found that this fixed point zðtÞ satisfies

� 3

2
a�1� z0 a�1� zðtÞa�1þ z0 a� 1

2
; tbT :

This complete the proof. r

As mentioned before, we find that Theorem 1.1 is an immediate conse-

quence of Proposition 2.2.

3. Asymptotic properties of nontrivial solutions

In the preceding section we have shown that (1) has two types of positive

solutions u satisfying

0 < lim inf
t!y

u 0ðtÞ
uðtÞ < y ð16Þ

and

�y < lim sup
t!y

u 0ðtÞ
uðtÞ < 0; ð17Þ

respectively, see the proof of Proposition 2.2. In this section, we firstly prove

that any nontrivial solution u of (1) satisfies either (16) or (17). Based on this

result we will give the proof of Theorem 1.2.

The following simple lemma will be employed very often in what follows:

Lemma 3.1. Let A;B > 0 be positive constants. Then there is a constant

e0 ¼ e0ðA;BÞ > 0 such that

Ax > �Bþ ex1�ð1=pÞ; xb 0;

if 0a ea e0:

Proposition 3.2. Any nontrivial solution u of (1) satisfies either (16) or

(17).
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A simple corollary to this properties follows:

Corollary 3.3. Every nontrivial solution u of (1) is a monotone function

near y.

Proof (Proof of Proposition 3.2). Let u be a positive solution of (1).

Define wðtÞ by

wðtÞ ¼ u 0ðtÞ
uðtÞ

����
����
a�1

u 0ðtÞ
uðtÞ ; ð18Þ

and put

l ¼ lim inf
t!y

wðtÞ; L ¼ lim sup
t!y

wðtÞ:

It su‰ces to show that

0 < l < y or �y < L < 0: ð19Þ

Note that wðtÞ satisfies the generalized Riccati equation (10) for su‰ciently

large T > 0: We will divide the argument into several cases according to the

value of l:

Case 1. The case where 0 < lay: If 0 < l < y, there is nothing to

prove. Let l ¼ y: Then L ¼ l ¼ y, that is, limt!y wðtÞ ¼ y: Integrating

(10) on ½T ; t�, we get

wðtÞ ¼ wðTÞ þ aðt� TÞ þ a

ð t

T

bðsÞds� a

ð t

T

wðsÞðaþ1Þ=a
ds;

where T is a su‰ciently large number. So Hölder’s inequality implied

that

wðtÞawðTÞ þ aðt� TÞ þ akbkL p½T ;yÞðt� TÞ1�ð1=pÞ

� at
1

t

ð t

T

wðsÞðaþ1Þ=a
ds

� �
:

Since limt!y t�1
Ð t

T
wðsÞðaþ1Þ=a

ds ¼ y, the right-hand side of this inequality

tends to �y as t ! y: This is an obvious contradiction. Consequently

l < y:

Case 2. The case where l ¼ 0: We will show that La 0: To see this

suppose the contrary that 0 < Lay: Take two number l1, l2 satisfying

0 < l1 < l2 < 1 and 0 < l1 < l2 < L:

Then we can find two sequences ftngyn¼1 and ft̂tngyn¼1 such that
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tn < t̂tn < tnþ1 < t̂tnþ1 < � � � ; ð20Þ

lim
n!y

tn ¼ lim
n!y

t̂tn ¼ y; ð21Þ

wðtnÞ ¼ l2; wðt̂tnÞ ¼ l1; ð22Þ

l1 < wðtÞ < l2 for t A ðtn; t̂tnÞ: ð23Þ

Integrating (10) on ½tn; t̂tn�, we obtain

wðt̂tnÞ � wðtnÞ ¼ aðt̂tn � tnÞ þ a

ð t̂tn

tn

bðsÞds� a

ð t̂tn

tn

jwðsÞjðaþ1Þ=a
ds: ð24Þ

It follows from (3), (22), (23) and Hölder’s inequality that

l1 � l2 b aðt̂tn � tnÞ � akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ � al
ðaþ1Þ=a
2 ðt̂tn � tnÞ;

and so

l1 � l2 b að1� l
ðaþ1Þ=a
2 Þðt̂tn � tnÞ � akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ: ð25Þ

Put

A ¼ að1� l
ðaþ1Þ=a
2 Þð> 0Þ; B ¼ l2 � l1ð> 0Þ; xn ¼ t̂tn � tnð> 0Þ;

and en ¼ akbkL p½tn;yÞ:

Then (25) means that

�BbAxn � enx
1�ð1=pÞ
n :

Since limn!y en ¼ 0, this contradicts to Lemma 3.1. Therefore, La 0:

Noting that l ¼ 0, we have l ¼ L ¼ 0; that is, limt!y wðtÞ ¼ 0:

Let us integrate (10) on ½T ; t�, with T being a su‰ciently large number,

and divide both sides of the resulting equality to obtain

wðtÞ � wðTÞ
t

¼ aðt� TÞ
t

þ a

t

ð t

T

bðsÞds� a

t

ð t

T

jwðsÞjðaþ1Þ=a
ds: ð26Þ

Since

1

t

ð t

T

bðsÞds
����

����a 1

t
ðt� TÞ1�ð1=pÞ

ðy
T

jbðsÞjpds
� �1=p

! 0 as t ! y;

by letting t ! y in (26), we get 0 ¼ a, which is an obvious contradiction.

Therefore this case Case 2 never occurs.

Case 3. The case where �ya l < 0: We will show �yaL < 0: To

this end suppose the contrary that Lb 0: Let l1 and l2 be su‰ciently small
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constants satisfying

l < l1 < l2 < 0; and �1 < l1 < l2 < 0:

Then, as before, we can find two sequences ftng and ft̂tng such that (20), (21),

(22) and (23) hold. An integration of (10) on ½tn; t̂tn� gives (24). It follows

that

l1 � l2 b aðt̂tn � tnÞ � akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ � ajl1jðaþ1Þ=aðt̂tn � tnÞ;

and so

l1 � l2 b að1� jl1jðaþ1Þ=aÞðt̂tn � tnÞ � akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ:

Put A ¼ að1� jl1jðaþ1Þ=aÞ, B ¼ l2 � l1, xn ¼ t̂tn � tn, and en ¼ akbkL p½tn;yÞ: Then

the inequality above means

�BbAxn � enx
1�ð1=pÞ
n :

This contradicts to Lemma 3.1. Therefore �yaL < 0:

To see �y < L < 0, the latter of (19), suppose the contrary that L ¼ �y,

that is, limt!y wðtÞ ¼ �y: An integration of (10) on ½T ; t�, with T being

su‰ciently large, gives

wðtÞ ¼ wðTÞ þ aðt� TÞ þ a

ð t

T

bðsÞds� a

ð t

T

jwðsÞjðaþ1Þ=a
ds:

Putting wðtÞ ¼ �hðtÞ, we find that limt!y hðtÞ ¼ y, and

hðtÞ ¼ c1 � at� a

ð t

T

bðsÞdsþ a

ð t

T

hðsÞðaþ1Þ=a
ds

b c1 � at� akbkL p½T ;yÞðt� TÞ1�ð1=pÞ þ a

ð t

T

hðsÞðaþ1Þ=a
ds;

where c1 is a constant. Since limt!y t�1
Ð t

T
hðsÞðaþ1Þ=a

ds ¼ y, this inequality

implies that

hðtÞb c2

ð t

T

hðsÞðaþ1Þ=a
ds; tb ~TT > T ð27Þ

for some constant c2 > 0 and ~TT : Let HðtÞ ¼
Ð t

T
hðsÞðaþ1Þ=a

ds: Then (27)

implies that HðtÞ > 0 for tb ~TT , and

H 0ðtÞ ¼ hðtÞðaþ1Þ=a
b c

ðaþ1Þ=a
2 HðtÞðaþ1Þ=a; tb ~TT :

So we obtain

H 0ðtÞHðtÞ�ðaþ1Þ=a
b c

ðaþ1Þ=a
2 ; tb ~TT :
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An integration of this inequality on ½ ~TT ; t� gives

aHð ~TTÞ�1=a � aHðtÞ�1=a
b c

ðaþ1Þ=a
2 ðt� ~TTÞ; tb ~TT :

This is a contradiction. Consequently the case L ¼ �y (and l ¼ �y) never

occurs.

The proof of Proposition 3.2 is complete. r

Now we are in a position to prove Theorem 1.2.

Proof (Proof of Theorem 1.2). As in the proof of Proposition 3.2, define

wðtÞ by (18), and put l ¼ lim inf t!y wðtÞ and L ¼ lim supt!y wðtÞ: We will

show that

l ¼ L ¼ 1 or l ¼ L ¼ �1:

Note that, by Proposition 3.2, we have already established

0 < l < y or �y < L < 0:

(I) The case where 0 < l < y: In this case u 0 > 0: So wðtÞ ¼
ðu 0ðtÞ=uðtÞÞa > 0 and w satisfies the equation

w 0 ¼ aþ abðtÞ � awðaþ1Þ=a: ð28Þ

The proof is further divided into several cases according to the value of l.

Case 1. The case where l > 1: We obviously have

wðtÞb c1 > 1; tbT ;

for some constant c1 > 0 and some su‰ciently large number T > 0: Then an

integration of (28) on ½T ; t� gives for some constant c2

wðtÞ ¼ atþ c2 þ a

ð t

T

bðsÞds� a

ð t

T

wðsÞðaþ1Þ=a
ds

a atþ c2 þ akbkL p½T ;yÞðt� TÞ1�ð1=pÞ � ac
ðaþ1Þ=a
1 ðt� TÞ

! �y as t ! y;

which is an obvious contradiction. Consequently this case does not occur.

Case 2. The case where 0 < l < 1: To see Lb 1, suppose the contrary

that L < 1: Then

wðtÞa c3 < 1; tbT

for some constants c3 and T : An integration of (28) on ½T ; t�, as before, gives
for some constant c4
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wðtÞb atþ c4 � akbkL p½T ;yÞðt� TÞ1�ð1=pÞ � ac
ðaþ1Þ=a
3 ðt� TÞ

! y as t ! y;

which is an obvious contradiction. Therefore, Lb 1, and so 0 < l < 1aL:

Let l1; l2 > 0 be two constants such that l < l1 < l2 < 1aL: Then there

are two sequences ftng and ft̂tng satisfying (20), (21), (22) and (23). Arguing as

in Case 2 of Proof of Proposition 3.2, we can get a contradiction.

Consequently Case 2 does not occur.

Case 3. The case where l ¼ 1: In this case 1 ¼ laL: If we can show

that L ¼ 1, then limt!y u 0ðtÞ=uðtÞ ¼ 1, and so (i) holds.

Suppose to the contrary that L > 1ð¼ lÞ: Let l1 and l2 be constants

satisfying l ¼ 1 < l1 < l2 < L: Then there are two sequences ftng and ft̂tng
such that

tn < t̂tn < tnþ1 < t̂tnþ1 < � � � ; ð29Þ

lim
n!y

tn ¼ lim
n!y

t̂tn ¼ y; ð30Þ

wðtnÞ ¼ l1; wðt̂tnÞ ¼ l2; ð31Þ

l1 < wðtÞ < l2 for t A ðtn; t̂tnÞ: ð32Þ

An integration of (10) on ½tn; t̂tn� yields

l2 � l1 ¼ aðt̂tn � tnÞ þ a

ð t̂tn

tn

bðsÞds� a

ð t̂tn

tn

wðsÞðaþ1Þ=a
ds

a aðt̂tn � tnÞ þ akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ � al
ðaþ1Þ=a
1 ðt̂tn � tnÞ;

which implies

l2 � l1 a�aðl ðaþ1Þ=a
1 � 1Þðt̂tn � tnÞ þ akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ:

By Lemma 3.1 this is a contradiction. So we can conclude L ¼ 1:

(II) The case where �y < L < 0: In this case u 0 < 0: So wðtÞ ¼
ju 0=uja�1 � ðu 0=uÞ < 0 and w satisfies the equation

w 0 ¼ aþ abðtÞ � ajwjðaþ1Þ=a:

The proof is further divided into several cases according to the value

of L:

Case 1. The case where L < �1: There are some constants c1 > 1 and T

such that

wðtÞa�c1 for tbT :
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An integration of (10) on ½T ; t� gives for some constant c2

wðtÞ ¼ c2 þ atþ a

ð t

T

bðsÞds� a

ð t

T

jwðsÞjðaþ1Þ=a
ds; ð33Þ

that is

wðtÞa c2 þ atþ akbkL p½T ;yÞðt� TÞ1�ð1=pÞ � ac
ðaþ1Þ=a
1 ðt� TÞ

! �y as t ! y:

This is a contradiction. Consequently this case never occurs.

Case 2. The case where �1 < L < 0: Suppose further that �1 < l

ðaL < 0Þ: Then there are constants c1 A ð0; 1Þ and T > 0 such that

wðtÞb�c1; tbT :

Therefore from (10), as before, we obtain for some constant c2

wðtÞb c2 þ at� akbkL p½T ;yÞðt� TÞ1�ð1=pÞ � ac
ðaþ1Þ=a
1 ðt� TÞ

! y as t ! y:

This is a contradiction. So la�1 ð< L < 0Þ:
Let l1; l2 < 0 be numbers satisfying

la�1 < l1 < l2 < L < 0:

Then, there are two sequences ftng, ft̂tng satisfying (20), (21), (22) and (23).

An integration of (10) on ½tn; t̂tn� gives

ð0 >Þ l1 � l2 ¼ aðt̂tn � tnÞ þ a

ð t̂tn

tn

bðsÞds� a

ð t̂tn

tn

jwðsÞjðaþ1Þ=a
ds

b aðt̂tn � tnÞ � akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ � ajl1jðaþ1Þ=aðt̂tn � tnÞ

¼ að1� jl1jðaþ1Þ=aÞðt̂tn � tnÞ � akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ:

By Lemma 3.1 this is a contradiction.

Consequently, this case Case 2 never occurs.

Case 3. The case where L ¼ �1: (By the above consideration this

case must occur.) To see l ¼ �1 ð¼ LÞ, suppose to the contrary that l <

�1 ¼ L:

Let l1, l2 be a numbers such that l < l1 < l2 < �1 ¼ L: Then there are

two sequences ftng and ft̂tng satisfying (29), (30), (31) and (32). An integration
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of (10) on ½tn; t̂tn� gives, as before,

l2 � l1 a aðt̂tn � tnÞ þ akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ � ajl2jðaþ1Þ=aðt̂tn � tnÞ;

so

l2 � l1 a�aðjl2jðaþ1Þ=a � 1Þðt̂tn � tnÞ þ akbkL p½tn;yÞðt̂tn � tnÞ1�ð1=pÞ:

By Lemma 3.1 this is a contradiction. Therefore l ¼ L ¼ �1:

This completes the proof of Theorem 1.2. r

Remark 3.4. The arguments in Proofs of Proposition 3.2 and Theorem

1.2 are motivated by [6].

4. Asymptotic forms of nontrivial solutions

In this section we give the proof of Theorem 1.3, which is the main result

of this paper.

We will employ the following Taylor’s expansion:

ð1þ xÞ1=a ¼ 1þ 1

a
xþ rðxÞ; jxj < 1; ð34Þ

where r is a continuous function satisfying

rðxÞ ¼ Oðjxj2Þ as x ! 0:

Proof (Proof of Theorem 1.3). Recall that, by Theorem 1.2, every

positive solution u of (1) satisfies either (i) or (ii) of Theorem 1.2. We

will show that u has the asymptotic form (4) if u 0 > 0, and that u has the

asymptotic form (5) if u 0 < 0:

(I) Let u 0 > 0: Put

wðtÞ ¼ u 0ðtÞ
uðtÞ

����
����
a�1

u 0ðtÞ
uðtÞ ¼ u 0ðtÞ

uðtÞ

� �a

;

and

wðtÞ ¼ 1þ zðtÞ:

Then, by Theorem 1.2

lim
t!y

zðtÞ ¼ 0

and we have shown

z 0 ¼ �bzþ abðtÞ � ajðzÞ; tbT ; ð35Þ
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where b ¼ aþ 1, and j is the function introduced in (11). Since u 0=u ¼
ð1þ zÞ1=a, tbT , for some large T > t0, we have

log
uðtÞ
uðTÞ ¼

ð t

T

ð1þ zðsÞÞ1=ads; tbT :

By (34) we obtain

log
uðtÞ
uðTÞ ¼ t� T þ 1

a

ð t

T

zðsÞdsþ
ð t

T

rðzðsÞÞds: ð36Þ

On the other hand an integration of (35) gives

zðtÞ ¼ zðTÞ � b

ð t

T

zðsÞdsþ a

ð t

T

bðsÞds� a

ð t

T

jðzðsÞÞds;

namely

1

a

ð t

T

zðsÞds ¼ zðTÞ
ab

� zðtÞ
ab

þ 1

b

ð t

T

bðsÞds� 1

b

ð t

T

jðzðsÞÞds: ð37Þ

From (36) and (37) we obtain

uðtÞ ¼ uðTÞ exp
�
t� T þ 1

b

ð t

T

bðsÞdsþ zðTÞ
ab

� zðtÞ
ab

� 1

b

ð t

T

jðzðsÞÞdsþ
ð t

T

rðzðsÞÞds
�
:

Since jðxÞ ¼ Oðjxj2Þ, rðxÞ ¼ Oðjxj2Þ as x ! 0 and limt!y zðtÞ ¼ 0, to see (4)

we will show

ðy
zðtÞ2dt < y:

Recall the assumption 1 < pa 2: Since

ðy
jzðtÞj2dt ¼

ðy
jzðtÞj2�p � jzðtÞjpdta c1

ðy
jzðtÞjpdt

for some constant c1 > 0, it su‰ces to show

ðy
jzðtÞjpdt < y: ð38Þ

(It is here that the restriction 1 < pa 2 is employed.)

Multiplying both sides of (35) by jzðtÞjp�2
zðtÞ and integrating the resulting

expression on ½T ; t�, we obtain
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1

p
ðjzðtÞjp � jzðTÞjpÞ ¼ �b

ð t

T

jzðsÞjpdsþ a

ð t

T

bðsÞjzðsÞjp�2
zðsÞds

� a

ð t

T

jðzðsÞÞjzðsÞjp�2
zðsÞds: ð39Þ

Let e > 0 be a small number satisfying b � ae > 0: Since limt!y zðtÞ ¼ 0,

there is a su‰ciently large T ¼ Te b t0 such that

jjðzðsÞÞj � jzðsÞjp�1
a ejzðsÞjp; sbT :

We may assume that T in (39) is such a number T : Then for tbT we

have

b

ð t

T

jzðsÞjpdsa c1 þ a

ð t

T

jbðsÞj � jzðsÞjp�1
dsþ a

ð t

T

jjðzðsÞÞj � jzðsÞjp�1
ds

a c1 þ a

ð t

T

jbðsÞjpds
� �1=p ð t

T

jzðsÞjpds
� �1�ð1=pÞ

þ ae

ð t

T

jzðsÞjpds;

for some constant c1 > 0: It follows that

ðb � aeÞ
ð t

T

jzðsÞjpdsa c1 þ akbkL p½T ;yÞ

ð t

T

jzðsÞjpds
� �1�ð1=pÞ

; tbT :

Put X ðtÞ ¼
Ð t

T
jzðsÞjpds, tbT : Then this inequality asserts

AX ðtÞa c1 þ BX ðtÞ1�ð1=pÞ; tbT ;

with some positive constants A and B: Since limy!y½Ay� ðc1 þ By1�ð1=pÞÞ� ¼
y, the set

fyb 0 jAya c1 þ By1�ð1=pÞg

is bounded. Therefore X ðtÞ ¼ Oð1Þ as t ! y; and so (4) holds.

(II) Let u 0 < 0: The proof is parallel to that of the case u 0 > 0 above.

Put

wðtÞ ¼ u 0ðtÞ
uðtÞ

����
����
a�1

u 0ðtÞ
uðtÞ ¼ � � u 0ðtÞ

uðtÞ

� �a

< 0;

and

wðtÞ ¼ �1� zðtÞ:

Then, by Theorem 1.2, limt!y zðtÞ ¼ 0, and

z 0 ¼ bzþ ajðzÞ � abðtÞ; tbT ; ð40Þ
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where b ¼ aþ 1, and j is the function introduced in (11). Since �u 0=u ¼
ð1þ zÞ1=a, tbT , for large T , we have

log
uðTÞ
uðtÞ ¼

ð t

T

ð1þ zðsÞÞ1=ads:

By (34) we obtain

log
uðTÞ
uðtÞ ¼ t� T þ 1

a

ð t

T

zðsÞdsþ
ð t

T

rðzðsÞÞds:

On the other hand an integration of (40) gives

zðtÞ ¼ zðTÞ þ b

ð t

T

zðsÞdsþ a

ð t

T

jðzðsÞÞds� a

ð t

T

bðsÞds:

So arguing as in (I), we obtain

uðtÞ ¼ uðTÞ exp
�
�tþ T � 1

b

ð t

T

bðsÞds� zðtÞ
ab

þ zðTÞ
ab

þ 1

b

ð t

T

jðzðsÞÞds�
ð t

T

rðzðsÞÞds
�
:

To prove (5), it su‰ces to show that (38) holds as before. Multiplying both

sides of (40) by jzðtÞjp�2
zðtÞ and integrating the resulting expression on ½T ; t�,

we obtain

1

p
ðjzðtÞjp � jzðTÞjpÞ ¼ b

ð t

T

jzðsÞjpds� a

ð t

T

bðsÞjzðsÞjp�2
zðsÞds

þ a

ð t

T

jðzðsÞÞjzðsÞjp�2
zðsÞds:

So

b

ð t

T

jzðsÞjpdsa c2 þ a

ð t

T

jbðsÞj � jzðsÞjp�1
dsþ a

ð t

T

jjðzðsÞÞj � jzðsÞjp�1
ds

for some constant c2 > 0: Arguing as in (I), we can show that (38) holds.

This completes the proof of Theorem 1.3. r
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[ 2 ] O. Došlý and P. Řehák, Half-linear Di¤erential Equations, Elsevier, 2005.

[ 3 ] P. Hartman, Ordinary Di¤erential Equations, Birkhäuser, 1982.
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[ 7 ] P. Řehák, Nonlinear Poincaré-Perron theorem, Appl. Math. Lett., 121 (2021), 107425.

Sokea Luey

Department of Mathematics

National Institute of Education

80, Preah Nordom Blvd, Phnom Penh, Cambodia

E-mail: luey.sokea@nie.edu.kh

Hiroyuki Usami

Faculty of Engineering

Gifu University

501-1193, Gifu Japan

E-mail: husami@gifu-u.ac.jp

189Half-linear ordinary di¤erential equations


