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ABSTRACT. We consider perturbed half-linear ordinary differential equations near oo.
We clarify asymptotic forms of the nontrivial solutions as ¢ — oo under p-th power
integrability conditions imposed on the perturbations. Generalized Riccati equations
associated with the half-linear equations under consideration are employed to prove the
main results.

1. Introduction and statements of main results

Let us consider the quasilinear ordinary differential equations of the
form

('] ") = a(1+b(O)u|* ", 1219 >0, M

where o > 0 is a constant, and b(¢) is a continuous function defined on [#, o).
The objective of this paper is to determine asymptotic forms of nontrivial
solutions of equation (1).
When o =1, that is, when equation (1) is reduced into the linear
equation

u" = (1+b(1))u, 1> to, (2)

such problems have been investigated since the middle of the twentieth century
by many mathematicians. Roughly speaking, if () is small near oo in some
sense, it can be shown that every nontrivial solution of (2) satisfies

t

u(t) ~ce'  or  u(f) ~ce” as t— o

for some constant ¢ # 0; see, for example, [1, 3] in details. (Here and in the
sequel the symbol “f () ~ g(¢) as t — o0 means that lim,, f(#)/g(f) =1 for
functions f(¢) and ¢(¢) defined near c0.)
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Recently the authors have tried to extend such results to the half-linear
equation (1), and obtained the following theorem:

THEOREM 1.0 ([5]). Suppose that

lim 5(f) =0 and J |b(2)|dt < o0.

11—

Then, every nontrivial solution u of (1) satisfies

t

u(t) ~ce'  or  u(t) ~ce” as t— oo

for some constant ¢ # 0.

However, when o = 1, it is well known that Theorem 1.0 can be proved
only under the condition [”|b(f)|df < oo. Therefore we conjecture that the
assumptions of Theorem 1.0 can be weakened. In this paper, we give an
affirmative answer to this conjecture.

Let us consider equation (1) under the following conditions:

(4)) o >0 is a constant;

(42) b(t) is a continuous function on [y, ), #H = 0;

(43) b(t) belongs to LP[ty, o0) for some p > 1:

161

© 1/p
v = (]| OPar) " < ®)
0

We always assume (A4;)—(A3) in this paper without further mention.
A C'-function u(7) defined near oo is called a solution of (1) if |u/|* 'u’ is
of class C' and (1) holds. It should be noted that every local solution of
(1) can be prolonged to a global solution existing on [fy, c0); see for example
[2, Chapter 1].

We will show as a first step

THEOREM 1.1.  Every nontrivial solution of (1) is of constant sign near 0.

A function u(¢) is a solution of (1) if so is —u(z). Therefore by The-
orem 1.1 we may treat mainly eventually positive solutions without loss of
generality.

Our main results are as follows:

THEOREM 1.2.  Every positive solution u of (1) satisfies exactly one of the
following two asymptotic properties:

(i) w ~uast— oo

(i) u' ~-—uast— oo.

For pe(1,2], we can get asymptotic forms of positive solutions:
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THEOREM 1.3. Let 1 < p < 2. Then every positive solution u of (1) has the
asymptotic form either

u(t) = cexp(l—&—alﬁjtb(s)ds—i—o(l)) as t— oo; (4)
u(t) = cexp(—t—o(j_ljtb(s)ds—&-o(l)) as t— oo, (5)

where ¢ >0 is a constant.

ReEmMARK 1.4. As will be shown in Proposition 2.2, surely there are
positive solutions u, respectively, satisfying the properties (i) and (ii) of
Theorem 1.2, and (4) and (5).

ExampLE 1.5. Let us consider the equation

~~

(|u'|“lu’)’=a<1+lia>|u|“u, t>1, (6
where ¢ > 0 is a constant.

(i) By Theorem 1.2, every positive solution u of (6) satisfies either u’ ~ u
or u' ~—u as t — .

(i) Let 1/2 <o < 1. By Theorem 1.3, every positive solution u of (6)
satisfies either

l1—-0
u(l):cexp(l+m+0(l)) as t — oo
or
-0
u(t):CGXp<—t—m+0(l)> as t — o0,

where ¢ > 0 is a constant.
(i) Let 6 =1. By Theorem 1.3, every positive solution u of (6) satisfies
either

u(r) = et'/#*D exp(r + o(1)) as t — oo
or
u(t) = etV exp(—i+ (1)) as 1 oo,

where ¢ > 0 is a constant.
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Notice that, if 0 <o <1, Theorem 1.0 is not applicable for equation

(6)-

This paper is organized as follows. In Section 2 preparatory results are
given. Theorem 1.1 is a simple consequence of the results here. In Section 3
the proof of Theorem 1.2 is given, and in Section 4 the proof of Theorem 1.3
is given.

In [4, 6, 7] analogous results to Theorem 1.0-Theorem 1.3 are obtained
under somewhat different assumptions.

2. Preparatory results

In this section we give preparatory considerations and results which will be
employed later.

To see Theorem 1.1 we employ the following result which is well known
for the case o= 1.

PropoOSITION 2.1. If equation (1) has a solution of constant sign near oo,
then every nontrivial solution of (1) is of constant sign near 0.

This proposition is a direct consequence of Sturm’s comparison theorem
for half-linear equations whose proof is found, for example, in [2, Theorem
1.2.3].  We must notice that, actually condition (43) is not required to see this
proposition. By this proposition, to prove Theorem 1.1, it suffices to show the
existence of a positive solution of (1) defined near oo. In fact, we can show
more precisely the following:

ProPoSITION 2.2. (i) Equation (1) has a positive solution u satisfying u’ > 0
near oo.
(i) Equation (1) has a positive solution u satisfying u' < 0 near oo.

We prepare several lemmas to see the proposition above:

LEmMA 2.3. Let o >0 be a constant. Then

t 0 1/p
J e~ p()ds| < C(p, o) (J |b(s)|”ds) . u>T (7)
T T
for some constant C(p,o) > 0, and similarly
o e 1/p
J eJ(t*Qb(S)dS < C(p,o) (J |b(s)|pds) , t>T (8)
t t

for some constant C(p,o) > 0.
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Proor. Since 1/p+ (p—1)/p =1, Holder’s inequality implies that

t (-DIp i 1p
< e,a-t |:J (EUS)[’/(p1>dS:| |:J |b(s)|‘nd5:|
T

T

_ 1\@=-D/p /oo 1/p
s(” 1) (J |b(s)|”ds) .
po T

So, (7) holds with C(p,o) =[(p — 1)/([)0)]@71)/1’_
The estimate (8) can be proved similarly. This completes the proof.
O

t
e J e”b(s)ds
T

To see Proposition 2.2 we seek suitable positive solutions u of equation (1)
of the form

u(r) = exp (J; [w(s)] 1/“1w(s)ds), t>T, 9)

where T > 0 is some number and w(s) is a C'-function. It is easily seen that
u(t) given by (9) is a positive solution of (1) if and only if w(¢) satisfies the
equation

w' =a(1+b(1) —ajw] NV i>T. (10)

We notice that equation (10) is often referred to as the generalized Riccati
equation associated with equation (1); see [2].

To solve equation (10) we employ the Taylor’s expansion of the function
(1+x)*D/* with remainder:

o+ 1
o

I+ =14yt g(x), | <1, (11)

where ¢(x) is a C'-function satisfying
p(x) = O0(x"), and  ¢'(x)=0(x]) as x— 0.

More precisely, we can show that there are positive numbers M = M(x) > 0
and M| = M;(x) > 0 satisfying

()l <M, and  |p/(x)| < Milxl, for [\ <1/2.  (12)

ProoF (Proof of Proposition 2.2). (i) We will show that equation (10)
has a positive solution w(z) near oo. In fact, for such a w(z), the function
u(t) given by (9) is a positive solution of (1) satisfying u’(¢) = u()w(1)"/* > 0,
t>T.
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Further, we put w(¢) =1+ z(f). Then by (11) we find that z(z) is a
solution of the equation

D pr=ab() —ap(s),  B=oat, (13)

satisfying 2 > 1 +z(¢#) > 0. Below we solve this equation.
Let zp € (0,1/2] be a sufficiently small number satisfying
ocMzg 20 oMz
<= and
B 2 B
Here M and M, are constants appearing in (12), and f=oa+ 1. Further,
take a T = T(zg) >ty so that

<1. (14)

t
ocJ e P=p(s)ds| < z/2, t>T. (15)

T

By Lemma 2.3, there is such a 7. Put
Z= {ze C[T, ) ||z]| = sup|z(?)| < Z()}.
t>T

Then Z is a nonempty closed subset of BC[T, o) consisting of all bounded
and continuous functions with the supremum norm ||z|| = sup,s p|z(¢)| for z €
BC[T, w).

We define the operator & : Z — C[T, o) by

t t

e P=9p(s)ds — acj e g (2(s))ds, t=2T
T

(F2)(f) = on

T

for ze Z. Below we will show that & is a contraction mapping from Z into
itself.
To see #(Z)C Z, let ze Z. Then by (12), (14) and (15) we find that

[(72)(0)]

IA

t
24 ocMJ e P 7(5) ds
2 T

Z0 ocMzé Z0 2o
< <=4== t>T.
<5 + 7 > + ) Z0, >

So #(Z)C Z.
Next, let z1,z; € Z. The mean value theorem and (12) imply that

lp(z1(5)) — p(22(5))] = 9" (E(5)) (21 (5) — 22(5))|
< MyE(s)] - |21 — 22l < Mazol|z1 — 22|
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for s > T, where £(s) is some real number between z(s) and z(s). It follows
that

[721(1) = 72 ()] < dJTe”“H)Icﬂ(Zl () = ¢(22(s))|ds

t
< otMleJ e P ds . ||z1 — 2|
T

OCM]ZQ
< — 21—z
p

for t > T; and so

O(M]Z()

|Zz1 — Fz| < lz1 — 22|l
Therefore & is a contraction by (14).

By the contraction principle, % has a unique fixed point z € Z, which
satisfies the integral equation

t
ef/f<H>b<s>dS*°‘J eI p(z(s))ds,  1=T.
T

z(t) = ocJ

T

We can find easily that z(¢) is a solution of (13) satisfying

<l—-zp<14z(t) <l+z < t>T.

N =
[NSTVS]

So, w(t) =1+4z(¢), t > T, is a positive solution of (10).
(i) As in the proof of (i) it suffices to show that equation (10) has a
negative solution w(¢) near oo. Therefore (10) is rewritten into

—w' = a(—w) TV _ 51 4 b(2)).

By putting w(f) = —1 — z(¢), and employing (11) it suffices to show the exis-
tence of a solution z of the equation

2! — Bz = —ab(t) + ap(z), f=oa+1,

satisfying —1 — z(¢) < 0.
Let zp € (0,1/2] be a small number satisfying (14), and T = T(z) > # be
a large number satisfying

o

J V e P6=0p(s)ds

t

20
S77 t>T.
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By Lemma 2.3 there is such a T. Put
Z={zeCIT, )| |l| < 0}

Then as in the proof of (i) we can show that there is a unique solution z € Z
of the integral equation

e 0

e P p(s)ds — aJ e o0 0p(2(s))ds, t>T,

t

z(t) = ocJ

t

by the contraction principle. It is found that this fixed point z(¢) satisfies

1
—%g—l—zos—l—z(t)g—IJrzos—E, t>T.
This complete the proof. O

As mentioned before, we find that Theorem 1.1 is an immediate conse-
quence of Proposition 2.2.

3. Asymptotic properties of nontrivial solutions

In the preceding section we have shown that (1) has two types of positive
solutions u satisfying

L ul(2)
0< hmﬁff u(0) < oo (16)
and
!
—oo < limsup w(1) < 0; (17)

=0 u(t)

respectively, see the proof of Proposition 2.2. In this section, we firstly prove
that any nontrivial solution u of (1) satisfies either (16) or (17). Based on this
result we will give the proof of Theorem 1.2.

The following simple lemma will be employed very often in what follows:

LemMma 3.1. Let A,B > 0 be positive constants. Then there is a constant
&0 = ¢&(A,B) > 0 such that

Ax > —B+ ex' =), x>0,
if 0 <e<eg.

PROPOSITION 3.2.  Any nontrivial solution u of (1) satisfies either (16) or
(17).
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A simple corollary to this properties follows:

COROLLARY 3.3.  Every nontrivial solution u of (1) is a monotone function
near oo.

ProOOF (Proof of Proposition 3.2). Let u be a positive solution of (1).
Define w(z) by

W' (0 ' (1)
w(t) = 18
v =] (18)
and put
/= lign inf w(z), L =limsup w(r).
— % t—o0
It suffices to show that
0<l< or —oo < L <0. (19)

Note that w(r) satisfies the generalized Riccati equation (10) for sufficiently
large T > 0. We will divide the argument into several cases according to the
value of /.

Case 1. The case where 0 <l < oo. If 0 </ < oo, there is nothing to
prove. Let /=o00. Then L=/= co, that is, lim,,, w(f) = co. Integrating
(10) on [T,1], we get

t

w(t) =w(T)+a(t—T)+ ocJ b(s)ds — ocr w(s) /% ds,

T T

where 7T is a sufficiently large number. So Holder’s inequality implied
that

w(t) <w(T)+a(t—T) + af|b]

t
— ot (IJ w(s) <“+1)/“ds> :
tlr

Since lim_., ¢! f; w(s)*™/*ds = o, the right-hand side of this inequality
tends to —oo as ¢t — oo. This is an obvious contradiction. Consequently
/ < 0.

Case 2. The case where | =0. We will show that L < 0. To see this
suppose the contrary that 0 < L < co. Take two number /;, /, satisfying

1-(1
L7, 00) (= T) (/)

O0<h<hx«l and O0<h<bh<L.

Then we can find two sequences {t,},-, and {7,},_, such that
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by <y <tyo) <lpip <o (20)
lim 7, = lim #, = oo; (21)
W(tn) - 12; W(En) = ll; (22)
Lh<w(t)<bh  for te(tyty). (23)

Integrating (10) on [z,,%,], we obtain
by
b(s)ds — ocJ lw(s)| D/ ds. (24)

Iy

W(Zn) - W(tn) = o‘(in - ln) + “Jiu

In
It follows from (3), (22), (23) and Holder’s inequality that
b= b = oty — ta) = Bl Loy ) (fn — ) =P = V(G — 1)
and so
b=l = a1 = 1) G — 1) = allbll g ooy (o — 1)) (25)
Put
A=a(1 =1V (>0), B=bL-04(>0),  xy=1i—1u(>0),

and & = a[bll s, o)

Then (25) means that

—B> Ax, — snx,i_(l/”).
Since lim,_. & =0, this contradicts to Lemma 3.1. Therefore, L <O0.
Noting that / =0, we have / = L = 0; that is, lim,, w(z) = 0.

Let us integrate (10) on [T,7], with T being a sufficiently large number,
and divide both sides of the resulting equality to obtain

_ _ t t
wit) = w(T) _At=T) ﬂj b(s)ds—zj () ds. (26)
! 1 1)y 1)y
Since
L ! (7 )
A b(s)ds| < ?(t— T) |b(s)|” ds —0 as t — oo,
T T

by letting 1 — oo in (26), we get 0 = o, which is an obvious contradiction.
Therefore this case Case 2 never occurs.

Case 3. The case where —oo <1< 0. We will show —c0 <L <0. To
this end suppose the contrary that L > 0. Let /; and [, be sufficiently small
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constants satisfying
I<h<h<O, and —-1<h<h<O.

Then, as before, we can find two sequences {z,} and {z,} such that (20), (21),
(22) and (23) hold. An integration of (10) on [t,,%,] gives (24). It follows
that

11 - lz > Of(in - [}’l) - O{’”b”l,l’[tn,?[))(i}’l — ln)lf(l/lﬁ _ a'll‘(a+l>/0{(in o ln),
and so
ll - ZZ = O‘(l - |ll|(1+1)/a)(in - tn) - OCHb”Lp[ )(En — [n)17<1/p).

Put 4 =a(l — |l]|(a+1>/a), B=15h—1I, x, =1, —ty, and &, = OCHbHLp[
the inequality above means

Iy, 00

Then

by, 0)

—B > Ax, — enx,ll_(l/”).

This contradicts to Lemma 3.1. Therefore —oo < L < 0.

To see —o0 < L < 0, the latter of (19), suppose the contrary that L = —co,
that is, lim, ., w(f) = —o0. An integration of (10) on [7,7], with T being
sufficiently large, gives

MﬂszHwU—THWwaﬁ—grw@wﬂww

T T

Putting w(t) = —h(t), we find that lim,, /(¢) = co, and

t t

b(s)ds + ocJ h(s) /% ds

T

h(t) = ¢ —oct—ocj

T

t
Lt =T 4y JTh(sﬂ””/“ds,

> —at—of|b]

where ¢ is a constant. Since lim,_., ¢! j}h(s)(““)/ *ds = oo, this inequality
implies that

t
moijmgmwug (>T>T (27)
T

for some constant ¢; >0 and T. Let H(t):j}h(s)(““)/“ds. Then (27)
implies that H(f) >0 for t > T, and

H/(t) _ h(t)(1+l)/0( > C£x+1)/aH(Z)(oz+l)/a > j‘w

3

So we obtain

)

H/(Z)H(t)—(oc+l)/a > Céa+1)/o¢
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An integration of this inequality on [T, gives

aH(T) 'V —aH() V" > V- T),  1>T.

This is a contradiction. Consequently the case L = —oo (and / = —o0) never
occurs.
The proof of Proposition 3.2 is complete. O

Now we are in a position to prove Theorem 1.2.

PRrOOF (Proof of Theorem 1.2). As in the proof of Proposition 3.2, define
w(t) by (18), and put /= liminf, ., w(f) and L =limsup,_, w(z). We will
show that

I=L=1 or I=L=-1
Note that, by Proposition 3.2, we have already established
0<l<w or —o0 < L<0.

(I) The case where 0<Il<oo. In this case u' >0. So w(f)=
(u'(¢)/u(f))* > 0 and w satisfies the equation

w' = o+ ab(t) — aw@+1/%, (28)

The proof is further divided into several cases according to the value of /.
Case 1. The case where [ > 1. We obviously have

w(t) = ¢ > 1, t>T,

for some constant ¢; > 0 and some sufficiently large number 7" > 0. Then an
integration of (28) on [T, gives for some constant ¢,

t t
b(s)ds — ocj w(s) @D/ gg

w(t) = oct+cz+ocj
T

T

< at+ ¢y + af|b]

— 1)/a
Ll’[T,oc)(l - T)] (Wp) — “ciw W(I -T)
— —0 as t — oo,

which is an obvious contradiction. Consequently this case does not occur.
Case 2. The case where 0 <l < 1. To see L =1, suppose the contrary
that L < 1. Then

w(t) <c3 <1, t>T

for some constants ¢3 and 7. An integration of (28) on [T,1], as before, gives
for some constant cy4
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w(t) = at + ca — ol|bl Loy oy (¢ = T)' 7P — eV (e - 1)

— 00 as t — oo,

which is an obvious contradiction. Therefore, L > 1, and so 0 </ <1 < L.

Let /1,1, > 0 be two constants such that / </; <l <1< L. Then there
are two sequences {7,} and {z,} satisfying (20), (21), (22) and (23). Arguing as
in Case 2 of Proof of Proposition 3.2, we can get a contradiction.

Consequently Case 2 does not occur.

Case 3. The case where | =1. In this case 1 =/ < L. If we can show
that L =1, then lim,_ ., «'(¢)/u(¢t) =1, and so (i) holds.

Suppose to the contrary that L > 1(=1/). Let /; and /, be constants
satisfying /=1<1; <h < L. Then there are two sequences {z,} and {7}
such that

by <y <lyp1 <lpp1 <o (29)
Jim, o = Jim = oo, o
w(ty) =h,  w(ty) = b; (31)
Lh<w(t)<bh  for te(tyty). (32)

An integration of (10) on [y, 7,] yields

A
b(s)ds — cxj w(s) (/2 g

Iy

b
L—1 :oc(fn—tn)+ocj

t
2 2 1—(1 o+1) /o 2
<oty —ty) + “Hb”Lv[zn,oc)(tn — In) e “11( i (tn — tn),

which implies
b= < —o(l{* 1) (80— t2) + al|B]l g ) (Fn — 22) 7.
By Lemma 3.1 this is a contradiction. So we can conclude L =1.
(II) The case where —oo < L <0. In this case u' <0. So w(t) =
' Jul*™" - (u' Ju) < 0 and w satisfies the equation

w' = o+ ab(1) — ofw| @V,

The proof is further divided into several cases according to the value
of L.

Case 1. The case where L < —1. There are some constants ¢; > 1 and T
such that

w(t) < —c¢ for t>T.
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An integration of (10) on [T, gives for some constant ¢,

t t
b(s)ds — aJ lw(s)|“FD/gs, (33)

w(t) = cz+oct+ocj
T

T

that is

w(t) < e2 + at + ol[b Loy oy (¢ = T)' 7P — eV (e - 1)

— — 0 as t — oo.

This is a contradiction. Consequently this case never occurs.
Case 2. The case where —1 < L < (0. Suppose further that —1 </
(£ L <0). Then there are constants ¢; € (0,1) and 7 > 0 such that

w(t) = —cy, t>T.
Therefore from (10), as before, we obtain for some constant ¢,

w(t) = e2 + ot = ol|bl Loy oy (¢ = T)' P — eV - 1)

— 0 as t — oo.

This is a contradiction. So / < —1 (< L <0).
Let /1,5 < 0 be numbers satisfying

I<—-1<h<b<L<O.

Then, there are two sequences {z,}, {#,} satisfying (20), (21), (22) and (23).
An integration of (10) on [t,,1,] gives

fn
b(s)ds—ocJ lw(s)| /% ds

In

fn
(0 >) L—b5h :Ot(in—ln)—l-otj

In

> oy — ta) — ollbl gy, oo (B — 1) — a1y TV (G, — 1)

a+1)/aN /2 ~ 1—(1
= o1 = (1] ") (G = 1) = allbl| gy ooy (B — 1))

By Lemma 3.1 this is a contradiction.
Consequently, this case Case 2 never occurs.

Case 3. The case where L= —1. (By the above consideration this
case must occur.) To see /= —1 (= L), suppose to the contrary that /<
—1=1L

Let /;, [, be a numbers such that / </} <l < —1= L. Then there are
two sequences {7,} and {7,} satisfying (29), (30), (31) and (32). An integration
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of (10) on [t,,1,] gives, as before,
L—-—1 < Of(in — ln) + a”b”LF[tn,oo)(in _ ln)lf(l/l’) _ a|12‘(a+1)/a(in . ln);
$0

b= I < —a(|B] " = 1) — ) + lBll oy ) — 2a) 7.

By Lemma 3.1 this is a contradiction. Therefore / =L = —1.
This completes the proof of Theorem 1.2. O

RemARK 3.4. The arguments in Proofs of Proposition 3.2 and Theorem
1.2 are motivated by [6].

4. Asymptotic forms of nontrivial solutions

In this section we give the proof of Theorem 1.3, which is the main result
of this paper.
We will employ the following Taylor’s expansion:

1
(l+x)l/x:1+&x+p(x), |x| < 1, (34)

where p is a continuous function satisfying
p(x)=0(x]*) as x— 0.

ProOOF (Proof of Theorem 1.3). Recall that, by Theorem 1.2, every
positive solution u of (1) satisfies either (i) or (ii) of Theorem 1.2. We
will show that u has the asymptotic form (4) if ¥’ > 0, and that u has the
asymptotic form (5) if u’ < 0.

(I) Let ' >0. Put

and

Then, by Theorem 1.2
lim z(f) =0

—o0
and we have shown

2= —pz+ ab(t) — ap(z), t>T, (35)
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where f=a+1, and ¢ is the function introduced in (11). Since u'/u=
(1 +z)1/“, t> T, for some large T > t;, we have

log ;l((?) = J;(l + z(s)) ds, t>T.

By (34) we obtain

log u(?) :t—T+1J
u o

t t

z(s)ds + JTp(z(s))ds. (36)

T

On the other hand an integration of (35) gives

z(t) = z(T) — ﬁJ; z(s)ds + o JIT b(s)ds — u J; o(z(s))ds;
namely
1 t B Z(T) B ﬂ l t _l t .
&JT Ay =20+ [),JT b(s)ds ﬂJT o(=(5))ds. (37)

From (36) and (37) we obtain

u(t) = u(T) exp<t - T+/134[Tb(s)ds+zi? _ZOE;)

5[ otetonas+ | petnas).

T

Since ¢(x) = O(|x|*), p(x) = O(|x|*) as x — 0 and lim,_,, z(r) = 0, to see (4)
we will show

JOC 2(£)%dt < 0.

Recall the assumption 1 < p <2. Since

o0

o0 o0
| era=] Eoprmora < al sop
for some constant ¢; > 0, it suffices to show
0
J =()|Pdt < oo. (38)
(It is here that the restriction 1 < p <2 is employed.)

Multiplying both sides of (35) by |z(r)|”2z(¢) and integrating the resulting
expression on [T,¢], we obtain
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t

! = — Izs s + o $)|z(s) [P 2z (s)ds
;(IZ(I)I”—IZ(T)I”)— ﬁJT\ (s)["ds + Jb()l()lp (s)d.

T
—ocj o(=(5)|2(5) [P 22(s) s (39)
T

Let ¢ >0 be a small number satisfying ff—oe > 0. Since lim,_., z(f) =0,
there is a sufficiently large 7' = T, > ¢y such that
o) - 20" <elz(s)”, 5= T.

We may assume that 7' in (39) is such a number 7. Then for t > T we
have

/)’Jt 12(5) Pds < 1 + j b - 2(5)17 s+ j 0(=()] - |2(5) " ds

T
! 1p st 1=(1/p) !

<c+ oc(J |b(s)|”ds> <J |z(s)|”ds> + otej |z(s)|7ds,
T T T

for some constant ¢; > 0. It follows that

1 1 1-(1/p)
(B - aa)J |2(s)|"ds < 1 + oIl Loir, o) (J IZ(S)I”dS> ;=T
T T

Put X(¢) = [, |z(s)|’ds, > T. Then this inequality asserts
AX(1) < ey +BxX ()P >,

with some positive constants 4 and B. Since lim,_..[4y — (¢; + By!=(1/P))] =
oo, the set

{y>0]Ay <c; +By!=(/P)}

is bounded. Therefore X (f) = O(1) as ¢t — co; and so (4) holds.
(I) Let v’ <0. The proof is parallel to that of the case u’ > 0 above.
Put

and
w(t) = —1—z(¢).
Then, by Theorem 1.2, lim,_, z(f) =0, and
z' = Bz + ap(z) — ab(1), t>T, (40)
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where f=a+ 1, and ¢ is the function introduced in (11). Since —u'/u =
(1 +z)1/“, t> T, for large T, we have

log L;((I;)) = J;(l + z(s))ds.

By (34) we obtain

log sz(];)) =t—-T+ iJT z(s)ds + J;p(z(s))ds.

On the other hand an integration of (40) gives

t
T T

z(t) = z(T) +ﬁJ z(s)ds + ocj

So arguing as in (I), we obtain

Blr ofp  aff

1 t t

s ] oenas— [ peonas).
T T

To prove (5), it suffices to show that (38) holds as before. Multiplying both

sides of (40) by |z(¢)|”?z(¢) and integrating the resulting expression on [T, 1],

we obtain

u(t) = u(T) exp(—t+ T—lr b(S)dS—@—l—@

! Pz Py = tzsps—octszspfzzss
(=) = |(T) >—ﬂJT\ (9)7d ij<>| " 22(s)d
; j o(=())|2(5) P =(5)ds.
T

So
ﬁj |Z(S)|pdSS02+0€J |b<s>|-\z<s>|"*‘ds+aj 10(2(5))] - 2()|ds
T T T

for some constant ¢; > 0. Arguing as in (I), we can show that (38) holds.
This completes the proof of Theorem 1.3. O
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