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1 Introduction

Let us consider the quasilinear ordinary differential efues of the following type near
+00:

(lu/|* ') = a1+ b(t)) [u]* u. (1.1)

Here we always assume that> 0 is a constantandle C[0, ). A C'' —functionu defined
near+oo is called a solution of equation (1.1) fi’|*~ ' is of classC!, and (1.1) is
satisfied for all sufficiently large

Whena = 1, equation (1.1) reduces to the linear equation

u” = (1+b(t))u. (1.2)

Therefore, equations of the type (1.1) can be regarded argeations of second order
linear equations. In fact, for a solutianof equation (1.1) and a constafit Cu is also
a solution of equation (1.1); however, the sum of two sohgiof equation (1.1) is not
always a solution of equation (1.1). Thus equations of syobd are often called half-linear
equations.

Our aim of the paper is to study the following Problem:

Problem. Whenb(t) is sufficiently small nea#oo, in some sense, what are the asymptotic
forms of solutions of equation (1.1)?

For the case where = 1, that s, for equation (1.2) such a problem has been extdgsive
investigated, see Bodine and Lutz (2015), Copple (1965). é&xample, it has been
well known in Copple (1965) and Hartman (1982) that everytrigial solution u of
equation (1.2) satisfies

u(t) ~ cet or u(t) ~ ce tast — co

for some constant=£ 0if [~ |b(t)|dt < co. Here, for functiongf (¢) andg(t) defined near
oo we write “f (t) ~ g(t) ast — oo if limyo0 f(t)/g(t) = 1.

We make an attempt to extend this simple result to half-tiegaation (1.1).

Inthe authors’ previous paper Luey and Usami (2021), we astablished the following
result as an answer to the Problem:

Theorem 1.0: Suppose that one of the next conditions holds:

e b(t) > 0near+ocand [~ b(t)dt < oo;
e —1<b(t)<0near+ooand [~ [—b(t)]dt < oo.



380 S. Luey and H. Usami

Then, every nontrivial solution of equation(1.1) has the asymptotic form
u(t) ~ cet or u(t) ~ ce ' ast — oo
for some constant £ 0.

In the authors’ previous paper the signum conditiong(on as stated above, are essentially
used to prove Theorem 1.0. However, we conjecture thatgimeisi conditions oh(¢) may

be superfluous. In the present paper, we show that the sigoaditions onb(¢) can be
removed from the assumption of Theorem 1.0 if another sresdlicondition is imposed on
b(t). The following, which gives a partial improvement of Theor&m, is the main result
of the paper:

Theorem 1.1: Suppose that

tli}lrolo b(t) =0 1.3)
and
/OO [b(t)|dt < oo. (1.4)

Then every nontrivial solution of equation(1.1) has the asymptotic form
u(t) ~ cet or u(t) ~ce tast — oo
for some constant # 0.

This paper is organised as follows. In Section 2 we staterabpeeparatory results which
are employed in proving Theorem 1.1. In Section 3 the prodtaforem 1.1 will be given.
The proof is based on asymptotic analysis of generaliseciRiequations associated with
equation (1.1). Related results concerning generalisechBRiequations are found in DoSly
andRehak (2005) and Patikova (2008).

Remark 1.2. (i) When« = 1, Theorem 1.1 was introduced, for example, in Bodine and
Lutz (2015), Copple (1965), and Hartman (1982). In this cas@lition (1.3) need not be
assumed. So we also conjecture that Theorem 1.1 is stitl gaén if (1.3) is dropped from
the assumption. To prove this fact is the theme of our futturéys

(i) Whenb(t) = 0, Theorem 1.1 was introduced in Do3ly aRéhék (2005).

2 Preparatory results
In this section we give several lemmas employed later.

Lemma2.1: Let(1.3)and(1.4)hold. Then every nontrivial solution of equati@hl)is
of constant sign neafco.
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Proof. LetT > 0be asufficiently large number such that b(¢t) > 0fort > T, andu(t)
be a nontrivial solution of equation (1.1) §f, o). If w is not of constant sign neafoo,
then there are two pointg;, 7> > T satisfyingT} < T and

U(Tl) =0, U/(Tl) > O,UI(TQ) =0, andu(t) > 0fort e (Tl,TQ).
An integration of equation (1.1) dfiy, 73] gives

,[u/(Tl)]a = a/ : (1 + b(s))u(s)"‘ds,

Ty

which is an obvious contradiction. Sois of constant sign nearoo. This completes the
proof. O

Lemma22: Let(1.3)and(1.4)hold. Then every nontrivial solutiom of equation(1.1)
satisfies one of the following two properties neax :

() |u' ()] T oo (and therefore|u(t)| T c0) as t — oo;

(i) |/ ()], |u(t)] J 0ast — co.

Sinceu(t) is a solution of equation (1.1) if and only if so-gu(t), in this paper we will
consider mainly eventually positive solutions.

Proofof Lemma 2.2 etT > 0 be asufficiently large number suchthat b(t) > 0, ¢t > T.
We may suppose thatt) > 0, t > T. Then, by equation (1.1) we see thaf(t)|~1u/(t)
is increasing oifil’, oo); that is,u/(¢) is increasing oifil’, oo). We divide the argument into
several cases by the limit of (¢) ast — oo.

Letw'(t) 1 oo ast — oo. Then property (i) of the statement holds.

Next, letw/(t) T ¢ ast — oo for some constant > 0. Thenu(t) ~ ¢t ast — oo, and
an integration of equation (1.1) gives

[/ ()] ' () — |u/(T)|* ! (T) = a/T (14 b(s))u(s)*ds
> /t (1+b(s))s™ds (2.1)

T
for some constant; > 0. Since

/ (1+b(s))s™ds > %H(t‘”l — Tt — t"‘/ |b(s)|ds

T T
— 00 ast — oo,

(2.1) is a contradiction to the fatiin; . v'(t) = c.

Letw'(t) 1 0 ast — oo. Thenu'(t) < 0 near+oo; and thereforeu(t) decreases near
+o0. Sinceu(t) > 0, we haveu(t) | [ for some constarit> 0. If I > 0, thenu(t) > [ near
+o00. We get from (2.1)

! (£)] 1 (8) — o (T)|* 1 (T) > 19 /T (1+b(s))ds

zl@{(t—T)—/Toow(s)\ds}

— 00 ast — oo.
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This is a contradiction to the fagim; ., v’(t) = 0. Thereforeu(t) | 0 (and/(t) 1 0),
and property (ii) holds.

Finally let «/(t) 1 ¢ ast — oo for some constant < 0. However, this implies that
u(t) ~ ct ast — oo. Sinceu(t) > 0, this is an obvious contradiction.

This completed the proof. O

3 Proof of the main result

In this section we give the proof of our main result Theorein Recall that every nontrivial
solutionu of equation (1.1) satisfies either (i) or (ii) of Lemma 2.2. ¥émsider asymptotic
forms of solutions of these two types separately. More pedgiin Section 3.1 we determine
the asymptotic form of nontrivial solutions of equationl(isatisfying (i) of Lemma 2.2,
while in Section 3.2 we determine that of nontrivial solasmf equation (1.1) satisfying (ii)
of Lemma 2.2. The proof of Theorem 1.1 will be completed imratdy by unifying these
results. Note thatwe always assume (1.3) and (i), o b(t) = 0and [~ [b(¢)|dt < occ.

3.1 Asymptotic form of nontrivial increasing solutions

We consider asymptotic forms of nontrivial solutiang) satisfying property (i) of Lemma
2.2:1u/(t)], |u(t)] T oo ast — oc.

Proposition 3.1: Every nontrivial solution: of (1.1) satisfying propertyi) of Lemma 2.2
has the asymptotic form

u(t) ~ ce' ast — oo,
for some constant = 0.
The proof of Proposition 3.1 needs several lemmas.

Lemma3.2: Letu be a positive solution dfL..1)satisfying propertyi) of Lemma 2.2, and
putw = (u’/u)a for sufficiently larget. Thenw satisfies the generalised Riccati equation

a+1

w =a(l+bt) —ow o . (3.1)
This lemma can be proved by a direct computation.

Lemma3.3: Letw be a positive solution ofl.1) satisfying propertyi) of Lemma 2.2.
Thenlim; o v/ (t) /u(t) = 1.

Proof. Put p(t) = (1 + b(t))a/(oz-i-l)

(v /u)” satisfies

. Then lim; o p(t) = 1, and the functionw =

a1 a+1)

w' = a(p(t) @ —w a (3.2)

by Lemma 3.2. It is sufficient to show thht; ., w(t) = 1. We consider the following
three exclusive cases separately:
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Case(a): w(t) > p(t) near+oo;
Case(b): w(t) < p(t) neartoo;
Case(c): w(t) — p(t) changes the sign in any neighbourhood-ab.

Let Case(a) occur. By (3.2) we have’(t) < 0; sow(t) decreases neafoo. Since
w(t) > p(t) andlim; o p(t) = 1, there is a limitlim;_, c w(t) = L € [1,00). Lett —
oo in (3.2). Then we havéim, . w'(t) = a(1 — LT/} Sincew(t) is bounded,
lim;_,~, w’(t) must bed; which means thak = 1. Solim;_, o, w(t) = 1.

Let Case(b) occur. We can show théin, ., w(t) = 1 similarly.

Finally let Case(c) occur. Put = liminf; o, w(t) andL = limsup,_, . w(t). Note
thatw’(t) > 0 [resp.w’(t) < 0] if and only if w(t) < p(t) [resp.w(t) > p(t)]. Therefore
0<L<TL< .

To provelim; ., w(t) = 1, thatisL = L = 1, we suppose the contrary that this is not
the case.

If L =L, then we can show, = L = 1 as before. So we may assurhe< L. From
(3.2) and the fact that < L < L < oo we haveL < 1 < L (andL < L). Consequently
there are three possibilities:

Case(c)-(): L <1< L;
Case(c)-(ii): L < 1 = L;
Case(c)-(iii): L=1< L.
Let Case(c)-(i) hold. PutL =1—06 (0 < ¢ < 1). Then there is a sequende, }

satisfying

t <to <o <ty <tpyr <---; lim ¢, = oo;

n—oo

w'(t,) =0, and w(t,) <1-—(§/2), neN.

By puttingt = ¢, in (3.2), we get,

a+1 a+1

0=w(ty) = a[p(tn)T —w(ty)

e - (1-2) %]

Letn — oo in the above inequality. Then we have a contradiction:

o2aft-(1-9)%).

Therefore,Case(c)-(i) does not occur. Similarly, we can show thaase(c)-(ii) does
not occur. LetCase(c)-(iii) hold. PutL =1+ ¢ (6 > 0). Then there is a sequen¢e, }
satisfying

th <to <. <ty <tpy1 <---; lim ¢, =o0;
n—oo

w'(t,) =0, and w(t,) >1+(§/2), neN.
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As in the previous Cases, we can get a contradiction.
This completes the proof. O

The following simple lemma is a variant of Gronwall’s lemma:

Lemma3.4: Letf,g € C[ty,00), andc > 0 be a constant such thétt), g(¢) > 0, and

t t
fO<cr [ fods+ [ gsds, 2

to

Then

t
F(t) < cet=to + / ¢g(s)ds, 12 to.

Proof Letus putH (t) = c + f; f(s)ds + f:n g(s)ds. Thenf(t) < H(t) and
H'(t) = f(t) +9(t) < H(t) + g(t), t=to,

by the assumption. Therefore,

(e’tH(t))l < etgt), t > to,

and so an integration dry, t] gives.
t
H(t) < cel™to 4 et/ e %g(s)ds, t>to.
to
Sincef(t) < H(t), the desired estimate ¢f¢) holds. This completes the proof. O
Now we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1We may suppose that{t) > 0 andu’(t) > 0. Letw = (u//u)* as
in the Proof of Lemma 3.3. We know théin; , ., w(t) = 1. Further put(¢) = w(t) — 1.
Thenlim;_, , z(t) = 0 andz(t) satisfies the equation

Y =a(l+bt) —a(l+2)"T (3.3)
Since
(1+:v)aT+l:1+a+1:v+cp(a:), x> —1 (3.4)

for some continuous functignwith ¢(z) = O(2?),  — 0, equation (3.3) can be rewritten
as follows:

2+ Bz = —ap(z) +abt), B=1+a(>0).
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This is equivalent to
(eﬁtz)/ = —ae’p(z) + ae’b(t). (3.5)

Letus estimate(t). Sincelim;_, o, z(t) = 0andlim,_,¢ ¢(x)/x = 0, there is a sufficiently
largeT" > 0 satisfying

alp(z(s))] < |z(s)| fors >T.

An integration of both the sides of equation (3.5)[@ht] gives

Pla(t) =1 — a/t P p(2(s))ds + a/t e?4b(s)ds, (3.6)

T T

wherec; = T z(T). Therefore,
t t
Pl z(t)| < |ei) +/ eP%|z(s)|ds + a/ eP%|b(s)|ds.
T T
By Lemma 3.4 we have fot > T,

t
P z(t)] < |erlet=T + a/ et =% eP%|b(s)|ds,
T

that is,
t
|2(t)| < coe™ " + ae*"‘t/ e*?|b(s)|ds 3.7
T
with some constant, > 0.
Recall that,
(1) 1 a
=w(t)/* = (1 t ) 3.8
) = Y= (14 20) (38)
Since
1
(1+x)V/> = 1+Ex+p(x), x> —1, (3.9

for some continuous functiomsatisfyinglim, o p(z)/2 = 0, we obtain from (3.8)

/Tt Z<(>) o= /T (1+ 2(s)"/ds

= /t [1 + éz(s) + p(z(s))}ds,

T




386 S. Luey and H. Usami

To seeu(t) ~ ce! for some constant > 0, it is sufficient to show thay ™ |z(s)|ds < oo
and [ |p(z2(s))|ds < co. In the following we will show these facts. By (3.7) and (1.4 w
find that,

o0 o0 o) t
/ [z(t)]dt < 02/ e tdt + a/ e_‘“/ e*®|b(s)|dsdt
T T T T

oo
< const+/ |b(t)|dt < 0.
T

Since we may assume tHatis sufficiently large, we find from the property pthat,
lp(2(t))| < |2(t)| fort>T.

Therefore,

/ Ip(z(t))|dt < / |z(t)|dt < oo.
T T
This completes the proof of Proposition 3.1. O

3.2 Asymptotic form of nontrivial decreasing solutions

We study asymptotic forms of nontrivial solution&) of equation (1.1) satisfying property
(i) of Lemma 2.2:|u'(t)], |u(t)| 4 0 ast — oco. The argumentis, in some sense, parallel
to that in Section 3.1.

Proposition 3.5: Every nontrivial solution, of (1.1)satisfying propertyii) of Lemma 2.2
has the asymptotic form

u(t) ~ce”t

ast — oo,
for some constant # 0.

Lemma3.6: Letu be a positive solution dfl.1)satisfying propertyii) of Lemma 2.2, and
putw = (—u’/u)® for sufficiently large. Thenw satisfies the generalised Riccati equation

w' = aw @D/ — o (14 b(t)).

Lemma3.7: Letw be a positive solution ofl.1) satisfying propertyii) of Lemma 2.2.
Thenlimy o [ — o/(£)/u(t)] = 1.

Proof. Put p(t) = (1+b(t))*/““*". Then lim, ... p(t) = 1, and the functionw =
(—u'/u)“ satisfies

W — a(w<a+1>/a _ p(t)<a+1>/a) (3.10)

by Lemma 3.6. It suffices to show thiat, ., w(t) = 1. We consider the following three
exclusive cases separately:
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Case(a): w(t) > p(t) near+oo;
Case(b): w(t) < p(t) near+oo;
Case(c): w(t) — p(t) changes the sign in any neighbourhood-ab.

Let Case(a) occur. Sincev'(t) > 0 by (3.10), there is a limitim; ., w(t) = L €
[1,00]. Suppose thak = +oco. Since(a + 1)/a > 1 andlim;_,~ p(t) = 1, we find from
(3.10) that there is a sufficiently largésatisfying

«

w'(t) > §w(t))‘ >0, t>T, A= (a+1)/a>1.
Y

So,w’ (t)w(t)

(55) 25 =7

> a2, thatis

Y

Integrating on7), t], we obtain

w(T) _«
—>—t-T t>"1T.

This is an obvious contradiction. Thus € [1, c0). Letting ¢t — co in (3.10), we get
e 1). Then as pointed out before, we halve= 1 as desired.

limy_ oo w'(t) = a(L
Case(b) can be treated similarly; and so we find that, ., w(t) = 1.

Finally let Case(c) occur. PutL = liminf; ., w(t) andL = limsup,_, . w(t). Note
thatw’(t) > 0 [resp.w’(t) < 0] if and only if w(t) > p(t) [resp.w(t) < p(¢)].

To provelim;_, ., w(t) = 1, we suppose the contrary that this is not the case.

If L =L €]0,00), then we can show. = L = 1 easily. So we may assume that
L < L. We find from (3.10) thad < L <1< L < +00 (andL < L ). There are three
possibilities:

Case(c)-(i):0 < L <1 < L < 4o0;
Case(c)-(i):0< L <1=1L;
Case(c)-(iii): L =1 < L < 4o0.

Let Case(c)-(i) hold. PutL =1 — § (0 < 6 < 1). Then, as in the Proof of Lemma 3.3,
we get a sequendge,, } satisfying

th <to < - <ty <tpy1 <---; lim ¢, =o0;
n—oo

w'(t,) =0 and w(t,) <1-— g forn € N.

Puttingt = ¢,, in (3.10), and letting: — oo in the resulting equation, we get

o<al-2) " 1]
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This is an obvious contradiction. Similarly we can show @ase(c)-(ii) does not occur.
Let (c)-(iii) hold. PutL = 1+ 4§ (6 > 0) if L < co. Then as before we can find a sequence
{t,} satisfying

th <teg <o <ty <tpy1 <---; lim ¢, =o0;

n—oo

w'(t,) =0 and w(t,) > 1+ g forn € N.

As before we can get a contradiction. The case wlieteco can be treated similarly.
This completes the proof. O

We are now in a position to prove Proposition 3.5.

Proof of Proposition 3.5\We may assume thait) > 0 andu/(¢) < 0. Letw = (—u//u)®
as in the proof of Lemma 3.7, in which we have proved; . w(t) = 1. Putz(t) =
w(t) — 1. Thenlim;_, « 2(t) = 0, andz(¢) satisfies the equation

2= a(l+2) @t/ —o(14b(t)).
By (3.4) we can rewrite this equation into

2= Bz =ap(z) —ab(t), B=1+a,
wherep(x) = O(2?) asz — 0. It follows that

(eiﬁtz)l = ae Plp(z) — ae Pb(t),

and an integration oft, o) gives

e Pta(t) = —a /00 eiﬁsga(z(s))ds + a/oo e P*b(s)ds. (3.11)

As in the proof of Proposition 3.1, for arbitrary number- 0 we can find a sufficiently
large numbefl” = 7. > 0 such that

lp(2(5))| <elz(s)], s>T.

So, from (3.11) we obtain
e PYz(t)) < ae/ e P%|2(s)|ds + a/ e P5b(s)|ds, t>T. (3.12)
t t

Let us denote by (¢) the right-hand side of equation (3.12). Then
e PYz(t)) < I(t), andI(t) = o(e ) ast — oo. (3.13)
Since

—I'(t) = ace P!|z(t)| + ae P b(t)]
< ael(t) + ae PYb(t)],
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we obtain
(e“ctI(t)) > —ae™ B2 p(t))]. (3.14)

From now on we fixs > 0 so smallthap — ae > 0. Then by (3.13)im;_, o, et 1(t) = 0.
Therefore an integration of equation (3.14)[6ro) gives

0<1I(t) < oze*ast/ e~ (B=29)3 p(5)|ds.
t
By this estimate and the first inequality of equation (3.18)fimd that

2(t)] < aelfoot /oo e~ (B=a2)s|p(s)|ds. (3.15)

t

Since—u/(t)/u(t) = (1 + z(t))l/o‘, by (3.9) we have

_Z((f)) — 14 éz(t) +p(2(1)), (3.16)
wherelim,, o p(z)/x = 0. Integrating (3.16) offiT’, ], we obtain
u(T) I ¢
log ) t—T+ -~ /T z(s)ds + /T p(z(s))ds. (3.17)

By (3.15) we find that

/ |z(s)|ds < a/ 6(5*“5)5(/ 67(5*“5)T|b(r)|dr)ds
T T s

< cl/ |b(s)|ds < o0
T

for some constant; > 0. Similarly, sincep(x) = o(z) asz — 0, we find that
/ Ip(z(s))]ds < 02/ |z(s)|ds < o0
T T

for some constant, > 0. Therefore (3.17) implies that

o UT)

og——=> =t+c3+o(l)ast — oo

u(t)
for some constant; € R, and so

t

u(t) ~ce” " ast — oo,

for some constant > 0.
This completes the proof of Proposition 3.5. O

As stated before, it is found that Theorem 1.1 is a direct equence of Propositions 3.1
and 3.5.
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