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1 Introduction

Let us consider the quasilinear ordinary differential equations of the following type near
+∞ :

(

|u′|α−1u′
)′

= α
(

1 + b(t)
)

|u|α−1u. (1.1)

Here we always assume thatα > 0 is a constant andb ∈ C[0,∞).A C1−functionu defined
near+∞ is called a solution of equation (1.1) if|u′|α−1u′ is of classC1, and (1.1) is
satisfied for all sufficiently larget.

Whenα = 1, equation (1.1) reduces to the linear equation

u′′ =
(

1 + b(t)
)

u. (1.2)

Therefore, equations of the type (1.1) can be regarded as generalisations of second order
linear equations. In fact, for a solutionu of equation (1.1) and a constantC, Cu is also
a solution of equation (1.1); however, the sum of two solutions of equation (1.1) is not
always a solution of equation (1.1). Thus equations of such types are often called half-linear
equations.

Our aim of the paper is to study the following Problem:

Problem. Whenb(t) is sufficiently small near+∞, in some sense, what are the asymptotic
forms of solutions of equation (1.1)?

For the case whereα = 1, that is, for equation (1.2) such a problem has been extensively
investigated, see Bodine and Lutz (2015), Copple (1965). For example, it has been
well known in Copple (1965) and Hartman (1982) that every nontrivial solution u of
equation (1.2) satisfies

u(t) ∼ cet or u(t) ∼ ce−t ast → ∞

for some constantc 6= 0 if
∫∞ |b(t)|dt < ∞. Here, for functionsf(t) andg(t) defined near

∞ we write “f(t) ∼ g(t) ast → ∞” if limt→∞ f(t)/g(t) = 1.
We make an attempt to extend this simple result to half-linear equation (1.1).
In the authors’ previous paper Luey and Usami (2021), we haveestablished the following

result as an answer to the Problem:

Theorem 1.0: Suppose that one of the next conditions holds:

• b(t) ≥ 0 near+∞ and
∫∞

b(t)dt < ∞;

• −1 < b(t) ≤ 0 near+∞ and
∫∞ [

− b(t)
]

dt < ∞.
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Then, every nontrivial solutionu of equation(1.1)has the asymptotic form

u(t) ∼ cet or u(t) ∼ ce−t ast → ∞

for some constantc 6= 0.

In the authors’ previous paper the signum conditions onb(t), as stated above, are essentially
used to prove Theorem 1.0. However, we conjecture that the signum conditions onb(t)may
be superfluous. In the present paper, we show that the signum conditions onb(t) can be
removed from the assumption of Theorem 1.0 if another smallness condition is imposed on
b(t). The following, which gives a partial improvement of Theorem1.0, is the main result
of the paper:

Theorem 1.1: Suppose that

lim
t→∞

b(t) = 0 (1.3)

and

∫ ∞

|b(t)|dt < ∞. (1.4)

Then every nontrivial solutionu of equation(1.1)has the asymptotic form

u(t) ∼ cet or u(t) ∼ ce−t as t → ∞

for some constantc 6= 0.

This paper is organised as follows. In Section 2 we state several preparatory results which
are employed in proving Theorem 1.1. In Section 3 the proof ofTheorem 1.1 will be given.
The proof is based on asymptotic analysis of generalised Riccati equations associated with
equation (1.1). Related results concerning generalised Riccati equations are found in Došlý
andŘehák (2005) and Pátíková (2008).

Remark 1.2. (i) Whenα = 1, Theorem 1.1 was introduced, for example, in Bodine and
Lutz (2015), Copple (1965), and Hartman (1982). In this casecondition (1.3) need not be
assumed. So we also conjecture that Theorem 1.1 is still valid even if (1.3) is dropped from
the assumption. To prove this fact is the theme of our future study.

(ii) When b(t) ≡ 0, Theorem 1.1 was introduced in Došlý andŘehák (2005).

2 Preparatory results

In this section we give several lemmas employed later.

Lemma 2.1: Let (1.3)and (1.4)hold. Then every nontrivial solution of equation(1.1) is
of constant sign near+∞.
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Proof: LetT > 0 be a sufficiently large number such that1 + b(t) > 0 for t ≥ T, andu(t)
be a nontrivial solution of equation (1.1) on[T,∞). If u is not of constant sign near+∞,
then there are two pointsT1, T2 ≥ T satisfyingT1 < T2 and

u(T1) = 0, u′(T1) ≥ 0, u′(T2) = 0, andu(t) > 0 for t ∈ (T1, T2).

An integration of equation (1.1) on[T1, T2] gives

−
[

u′(T1)
]α

= α

∫ T2

T1

(

1 + b(s)
)

u(s)αds,

which is an obvious contradiction. Sou is of constant sign near+∞. This completes the
proof. �

Lemma 2.2: Let (1.3)and (1.4)hold. Then every nontrivial solutionu of equation(1.1)
satisfies one of the following two properties near+∞ :

(i) |u′(t)| ↑ ∞ (and therefore,|u(t)| ↑ ∞) as t → ∞;

(ii) |u′(t)|, |u(t)| ↓ 0 ast → ∞.

Sinceu(t) is a solution of equation (1.1) if and only if so is−u(t), in this paper we will
consider mainly eventually positive solutions.

Proof of Lemma 2.2: LetT > 0be a sufficiently large number such that1+ b(t) > 0, t ≥ T.
We may suppose thatu(t) > 0, t ≥ T. Then, by equation (1.1) we see that|u′(t)|α−1u′(t)
is increasing on[T,∞); that is,u′(t) is increasing on[T,∞). We divide the argument into
several cases by the limit ofu′(t) ast → ∞.

Let u′(t) ↑ ∞ ast → ∞. Then property (i) of the statement holds.
Next, letu′(t) ↑ c ast → ∞ for some constantc > 0. Thenu(t) ∼ ct ast → ∞, and

an integration of equation (1.1) gives

|u′(t)|α−1u′(t)− |u′(T )|α−1u′(T ) = α

∫ t

T

(

1 + b(s)
)

u(s)αds

≥ c1

∫ t

T

(

1 + b(s)
)

sαds (2.1)

for some constantc1 > 0. Since
∫ t

T

(

1 + b(s)
)

sαds ≥ 1

α+ 1

(

tα+1 − Tα+1
)

− tα
∫ ∞

T

|b(s)|ds

−→ ∞ ast → ∞,

(2.1) is a contradiction to the factlimt→∞ u′(t) = c.
Let u′(t) ↑ 0 ast → ∞. Thenu′(t) < 0 near+∞; and thereforeu(t) decreases near

+∞.Sinceu(t) > 0, we haveu(t) ↓ l for some constantl ≥ 0. If l > 0, thenu(t) ≥ l near
+∞. We get from (2.1)

|u′(t)|α−1u′(t)− |u′(T )|α−1u′(T ) ≥ lα
∫ t

T

(

1 + b(s)
)

ds

≥ lα
{

(t− T )−
∫ ∞

T

∣

∣b(s)
∣

∣ds
}

−→ ∞ ast → ∞.
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This is a contradiction to the factlimt→∞ u′(t) = 0. Thereforeu(t) ↓ 0 ( andu′(t) ↑ 0),
and property (ii) holds.

Finally let u′(t) ↑ c as t → ∞ for some constantc < 0. However, this implies that
u(t) ∼ ct ast → ∞. Sinceu(t) > 0, this is an obvious contradiction.

This completed the proof. �

3 Proof of the main result

In this section we give the proof of our main result Theorem 1.1. Recall that every nontrivial
solutionu of equation (1.1) satisfies either (i) or (ii) of Lemma 2.2. Weconsider asymptotic
forms of solutions of these two types separately. More precisely, in Section 3.1 we determine
the asymptotic form of nontrivial solutions of equation (1.1) satisfying (i) of Lemma 2.2,
while in Section 3.2 we determine that of nontrivial solutions of equation (1.1) satisfying (ii)
of Lemma 2.2. The proof of Theorem 1.1 will be completed immediately by unifying these
results. Note that we always assume (1.3) and (1.4):limt→∞ b(t) = 0and

∫∞ |b(t)|dt < ∞.

3.1 Asymptotic form of nontrivial increasing solutions

We consider asymptotic forms of nontrivial solutionsu(t) satisfying property (i) of Lemma
2.2: |u′(t)|, |u(t)| ↑ ∞ ast → ∞.

Proposition 3.1: Every nontrivial solutionu of (1.1)satisfying property(i) of Lemma 2.2
has the asymptotic form

u(t) ∼ cet ast → ∞,

for some constantc 6= 0.

The proof of Proposition 3.1 needs several lemmas.

Lemma 3.2: Letu be a positive solution of(1.1)satisfying property(i) of Lemma 2.2, and
putw =

(

u′/u
)α

for sufficiently larget. Thenw satisfies the generalised Riccati equation

w′ = α
(

1 + b(t)
)

− αw
α+1

α . (3.1)

This lemma can be proved by a direct computation.

Lemma 3.3: Let u be a positive solution of(1.1) satisfying property(i) of Lemma 2.2.
Thenlimt→∞ u′(t)/u(t) = 1.

Proof: Put p(t) =
(

1 + b(t)
)α/(α+1)

. Then limt→∞ p(t) = 1, and the functionw =
(

u′/u
)α

satisfies

w′ = α
(

p(t)
α+1

α − w
α+1

α

)

(3.2)

by Lemma 3.2. It is sufficient to show thatlimt→∞ w(t) = 1. We consider the following
three exclusive cases separately:
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Case(a): w(t) ≥ p(t) near+∞;

Case(b): w(t) ≤ p(t) near+∞;

Case(c): w(t)− p(t) changes the sign in any neighbourhood of+∞.

Let Case(a) occur. By (3.2) we havew′(t) ≤ 0; sow(t) decreases near+∞. Since
w(t) ≥ p(t) and limt→∞ p(t) = 1, there is a limitlimt→∞ w(t) = L ∈ [1,∞). Let t →
∞ in (3.2). Then we havelimt→∞ w′(t) = α

(

1− L(α+1)/α
)

. Sincew(t) is bounded,
limt→∞ w′(t) must be0; which means thatL = 1. Solimt→∞ w(t) = 1.

Let Case(b) occur. We can show thatlimt→∞ w(t) = 1 similarly.
Finally let Case(c) occur. PutL = lim inft→∞ w(t) andL = lim supt→∞ w(t). Note

thatw′(t) > 0 [resp.w′(t) < 0] if and only if w(t) < p(t) [resp.w(t) > p(t)]. Therefore
0 < L ≤ L < ∞.

To provelimt→∞ w(t) = 1, that isL = L = 1, we suppose the contrary that this is not
the case.

If L = L, then we can showL = L = 1 as before. So we may assumeL < L. From
(3.2) and the fact that0 < L < L < ∞ we haveL ≤ 1 ≤ L ( andL < L). Consequently
there are three possibilities:

Case(c)-(i): L < 1 < L;

Case(c)-(ii): L < 1 = L;

Case(c)-(iii): L = 1 < L.

Let Case (c)-(i) hold. PutL = 1− δ (0 < δ < 1). Then there is a sequence{tn}
satisfying

t1 < t2 < · · · < tn < tn+1 < · · · ; lim
n→∞

tn = ∞;

w′(tn) = 0, and w(tn) < 1− (δ/2), n ∈ N.

By puttingt = tn in (3.2), we get,

0 = w′(tn) = α
[

p(tn)
α+1

α − w(tn)
α+1

α

]

> α
[

p(tn)
α+1

α −
(

1− δ

2

)
α+1

α
]

.

Let n → ∞ in the above inequality. Then we have a contradiction:

0 ≥ α
[

1−
(

1− δ

2

)

α+1

α
]

.

Therefore,Case(c)-(i) does not occur. Similarly, we can show thatCase(c)-(ii) does
not occur. LetCase(c)-(iii) hold. PutL = 1 + δ (δ > 0). Then there is a sequence{tn}
satisfying

t1 < t2 < · · · < tn < tn+1 < · · · ; lim
n→∞

tn = ∞;

w′(tn) = 0, and w(tn) > 1 + (δ/2), n ∈ N.
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As in the previous Cases, we can get a contradiction.
This completes the proof. �

The following simple lemma is a variant of Gronwall’s lemma:

Lemma 3.4: Letf, g ∈ C[t0,∞), andc ≥ 0 be a constant such thatf(t), g(t) ≥ 0, and

f(t) ≤ c+

∫ t

t0

f(s)ds+

∫ t

t0

g(s)ds, t ≥ t0.

Then

f(t) ≤ cet−t0 +

∫ t

t0

et−sg(s)ds, t ≥ t0.

Proof: Let us putH(t) = c+
∫ t

t0
f(s)ds+

∫ t

t0
g(s)ds. Thenf(t) ≤ H(t) and

H ′(t) = f(t) + g(t) ≤ H(t) + g(t), t ≥ t0,

by the assumption. Therefore,

(

e−tH(t)
)′

≤ e−tg(t), t ≥ t0,

and so an integration on[t0, t] gives.

H(t) ≤ cet−t0 + et
∫ t

t0

e−sg(s)ds, t ≥ t0.

Sincef(t) ≤ H(t), the desired estimate off(t) holds. This completes the proof. �

Now we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1: We may suppose thatu(t) > 0 andu′(t) > 0. Letw = (u′/u)α as
in the Proof of Lemma 3.3. We know thatlimt→∞ w(t) = 1. Further putz(t) = w(t) − 1.
Thenlimt→∞ z(t) = 0 andz(t) satisfies the equation

z′ = α
(

1 + b(t)
)

− α
(

1 + z
)(α+1)/α

. (3.3)

Since

(

1 + x
)

α+1

α = 1 +
α+ 1

α
x+ ϕ(x), x > −1 (3.4)

for some continuous functionϕwithϕ(x) = O(x2), x → 0,equation (3.3) can be rewritten
as follows:

z′ + βz = −αϕ(z) + αb(t), β = 1 + α (> 0).
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This is equivalent to

(

eβtz
)′

= −αeβtϕ(z) + αeβtb(t). (3.5)

Let us estimatez(t).Sincelimt→∞ z(t) = 0andlimx→0 ϕ(x)/x = 0, there is a sufficiently
largeT > 0 satisfying

α
∣

∣ϕ
(

z(s)
)∣

∣ ≤ |z(s)| for s ≥ T.

An integration of both the sides of equation (3.5) on[T, t] gives

eβtz(t) = c1 − α

∫ t

T

eβsϕ(z(s))ds+ α

∫ t

T

eβsb(s)ds, (3.6)

wherec1 = eβT z(T ). Therefore,

eβt|z(t)| ≤ |c1|+
∫ t

T

eβs|z(s)|ds+ α

∫ t

T

eβs|b(s)|ds.

By Lemma 3.4 we have fort ≥ T,

eβt|z(t)| ≤ |c1|et−T + α

∫ t

T

et−s · eβs|b(s)|ds,

that is,

|z(t)| ≤ c2e
−αt + αe−αt

∫ t

T

eαs|b(s)|ds (3.7)

with some constantc2 > 0.

Recall that,

u′(t)

u(t)
= w(t)1/α =

(

1 + z(t)
)1/α

. (3.8)

Since

(1 + x)1/α = 1 +
1

α
x+ ρ(x), x > −1, (3.9)

for some continuous functionρ satisfyinglimx→0 ρ(x)/x = 0, we obtain from (3.8)

∫ t

T

u′(s)

u(s)
ds =

∫ t

T

(

1 + z(s))1/αds

=

∫ t

T

[

1 +
1

α
z(s) + ρ

(

z(s)
)

]

ds,

and so

e−tu(t) = u(T ) exp
(

− T +
1

α

∫ t

T

z(s)ds+

∫ t

T

ρ(z(s))ds
)

.
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To seeu(t) ∼ cet for some constantc > 0, it is sufficient to show that
∫∞ |z(s)|ds < ∞

and
∫∞ |ρ(z(s))|ds < ∞. In the following we will show these facts. By (3.7) and (1.4) we

find that,

∫ ∞

T

|z(t)|dt ≤ c2

∫ ∞

T

e−αtdt+ α

∫ ∞

T

e−αt

∫ t

T

eαs|b(s)|dsdt

≤ const+
∫ ∞

T

|b(t)|dt < ∞.

Since we may assume thatT is sufficiently large, we find from the property ofρ that,

∣

∣ρ
(

z(t)
)
∣

∣ ≤ |z(t)| for t ≥ T.

Therefore,
∫ ∞

T

∣

∣ρ(z(t))
∣

∣dt ≤
∫ ∞

T

|z(t)|dt < ∞.

This completes the proof of Proposition 3.1. �

3.2 Asymptotic form of nontrivial decreasing solutions

We study asymptotic forms of nontrivial solutionsu(t) of equation (1.1) satisfying property
(ii) of Lemma 2.2:|u′(t)|, |u(t)| ↓ 0 ast → ∞. The argument is, in some sense, parallel
to that in Section 3.1.

Proposition 3.5: Every nontrivial solutionu of (1.1)satisfying property(ii) of Lemma 2.2
has the asymptotic form

u(t) ∼ ce−t ast → ∞,

for some constantc 6= 0.

Lemma 3.6: Letu be a positive solution of(1.1)satisfying property(ii) of Lemma 2.2, and
putw = (−u′/u)α for sufficiently larget. Thenw satisfies the generalised Riccati equation

w′ = αw(α+1)/α − α
(

1 + b(t)
)

.

Lemma 3.7: Let u be a positive solution of(1.1) satisfying property(ii) of Lemma 2.2.
Thenlimt→∞

[

− u′(t)/u(t)
]

= 1.

Proof: Put p(t) =
(

1 + b(t)
)α/(α+1)

. Then limt→∞ p(t) = 1, and the functionw =
(−u′/u)α satisfies

w′ = α
(

w(α+1)/α − p(t)(α+1)/α
)

(3.10)

by Lemma 3.6. It suffices to show thatlimt→∞ w(t) = 1. We consider the following three
exclusive cases separately:
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Case(a):w(t) ≥ p(t) near+∞;

Case(b):w(t) ≤ p(t) near+∞;

Case(c):w(t) − p(t) changes the sign in any neighbourhood of+∞.

Let Case(a) occur. Sincew′(t) ≥ 0 by (3.10), there is a limitlimt→∞ w(t) ≡ L ∈
[1,∞]. Suppose thatL = +∞. Since(α + 1)/α > 1 andlimt→∞ p(t) = 1, we find from
(3.10) that there is a sufficiently largeT satisfying

w′(t) ≥ α

2
w(t)λ > 0, t ≥ T, λ = (α+ 1)/α > 1.

So,w′(t)w(t)−λ ≥ α/2, that is

(w(t)1−λ

1− λ

)′

≥ α

2
, t ≥ T.

Integrating on[T, t], we obtain

w(T )1−λ

λ− 1
≥ α

2
(t− T ), t ≥ T.

This is an obvious contradiction. ThusL ∈ [1,∞). Letting t → ∞ in (3.10), we get

limt→∞ w′(t) = α
(

L
(α+1)

α − 1
)

. Then as pointed out before, we haveL = 1 as desired.

Case(b) can be treated similarly; and so we find thatlimt→∞ w(t) = 1.

Finally let Case(c) occur. PutL = lim inft→∞ w(t) andL = lim supt→∞ w(t). Note
thatw′(t) > 0 [resp.w′(t) < 0] if and only if w(t) > p(t) [resp.w(t) < p(t)].

To provelimt→∞ w(t) = 1, we suppose the contrary that this is not the case.
If L = L ∈ [0,∞), then we can showL = L = 1 easily. So we may assume that

L < L. We find from (3.10) that0 ≤ L ≤ 1 ≤ L ≤ +∞ (andL < L ). There are three
possibilities:

Case(c)-(i): 0 ≤ L < 1 < L ≤ +∞;

Case(c)-(ii): 0 ≤ L < 1 = L;

Case(c)-(iii): L = 1 < L ≤ +∞.

Let Case(c)-(i) hold. PutL = 1− δ (0 < δ ≤ 1). Then, as in the Proof of Lemma 3.3,
we get a sequence{tn} satisfying

t1 < t2 < · · · < tn < tn+1 < · · · ; lim
n→∞

tn = ∞;

w′(tn) = 0 and w(tn) < 1− δ

2
for n ∈ N.

Puttingt = tn in (3.10), and lettingn → ∞ in the resulting equation, we get

0 ≤ α
[(

1− δ

2

)(α+1)/α

− 1
]

.
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This is an obvious contradiction. Similarly we can show thatCase(c)-(ii) does not occur.
Let (c)-(iii) hold. PutL = 1 + δ (δ > 0) if L < ∞. Then as before we can find a sequence
{tn} satisfying

t1 < t2 < · · · < tn < tn+1 < · · · ; lim
n→∞

tn = ∞;

w′(tn) = 0 and w(tn) > 1 +
δ

2
for n ∈ N.

As before we can get a contradiction. The case whereL = ∞ can be treated similarly.
This completes the proof. �

We are now in a position to prove Proposition 3.5.

Proof of Proposition 3.5.We may assume thatu(t) > 0 andu′(t) < 0. Letw = (−u′/u)α

as in the proof of Lemma 3.7, in which we have provedlimt→∞ w(t) = 1. Put z(t) =
w(t)− 1. Thenlimt→∞ z(t) = 0, andz(t) satisfies the equation

z′ = α(1 + z)(α+1)/α − α
(

1 + b(t)
)

.

By (3.4) we can rewrite this equation into

z′ − βz = αϕ(z)− αb(t), β = 1 + α,

whereϕ(x) = O(x2) asx → 0. It follows that

(

e−βtz
)′

= αe−βtϕ(z)− αe−βtb(t),

and an integration on[t,∞) gives

e−βtz(t) = −α

∫ ∞

t

e−βsϕ
(

z(s)
)

ds+ α

∫ ∞

t

e−βsb(s)ds. (3.11)

As in the proof of Proposition 3.1, for arbitrary numberε > 0 we can find a sufficiently
large numberT = Tε > 0 such that

∣

∣ϕ
(

z(s)
)∣

∣ ≤ ε|z(s)|, s ≥ T.

So, from (3.11) we obtain

e−βt|z(t)| ≤ αε

∫ ∞

t

e−βs|z(s)|ds+ α

∫ ∞

t

e−βs|b(s)|ds, t ≥ T. (3.12)

Let us denote byI(t) the right-hand side of equation (3.12). Then

e−βt|z(t)| ≤ I(t), andI(t) = o(e−βt) ast → ∞. (3.13)

Since

−I ′(t) = αεe−βt|z(t)|+ αe−βt|b(t)|
≤ αεI(t) + αe−βt|b(t)|,
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we obtain

(

eαεtI(t)
)′ ≥ −αe−(β−αε)t|b(t)|. (3.14)

From now on we fixε > 0 so small thatβ − αε > 0.Then by (3.13)limt→∞ eαεtI(t) = 0.
Therefore an integration of equation (3.14) on[t,∞) gives

0 ≤ I(t) ≤ αe−αεt

∫ ∞

t

e−(β−αε)s|b(s)|ds.

By this estimate and the first inequality of equation (3.13) we find that

|z(t)| ≤ αe(β−αε)t

∫ ∞

t

e−(β−αε)s|b(s)|ds. (3.15)

Since−u′(t)/u(t) =
(

1 + z(t)
)1/α

, by (3.9) we have

−u′(t)

u(t)
= 1 +

1

α
z(t) + ρ

(

z(t)
)

, (3.16)

wherelimx→0 ρ(x)/x = 0. Integrating (3.16) on[T, t], we obtain

log
u(T )

u(t)
= t− T +

1

α

∫ t

T

z(s)ds+

∫ t

T

ρ
(

z(s)
)

ds. (3.17)

By (3.15) we find that

∫ ∞

T

|z(s)|ds ≤ α

∫ ∞

T

e(β−αε)s
(

∫ ∞

s

e−(β−αε)r|b(r)|dr
)

ds

≤ c1

∫ ∞

T

|b(s)|ds < ∞

for some constantc1 > 0. Similarly, sinceρ(x) = o(x) asx → 0, we find that

∫ ∞

T

|ρ
(

z(s)
)

|ds ≤ c2

∫ ∞

T

|z(s)|ds < ∞

for some constantc2 > 0. Therefore (3.17) implies that

log
u(T )

u(t)
= t+ c3 + o(1) ast → ∞

for some constantc3 ∈ R, and so

u(t) ∼ ce−t ast → ∞,

for some constantc > 0.
This completes the proof of Proposition 3.5. �

As stated before, it is found that Theorem 1.1 is a direct consequence of Propositions 3.1
and 3.5.
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