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Abstract. Asymptotic forms of nontrivial solutions of half-linear ordinary
differential equation(

|u′|α−1u′
)′

= α
(
1 + b(t)

)
|u|α−1u, α > 0,

are investigated under smallness conditions on b(t). It is shown that every
nontrivial solution of this equation behaves like cet or ce−t, c = const 6= 0,
as t → ∞. When α = 1, our results reduce to well-know ones for linear
ordinary differential equations.

The proof of one of the main results is based on analysis of solutions of
generalized Riccati equations associated with this half-linear equation.

1 Introduction

In modern physical sciences, biological sciences and technology, it is found
that various phenomena are described in terms of differential equations. So
it is impossible to study modern sciences without deep understanding of
differential equations, in particular, nonlinear ordinary differential equations.

Motivated by these facts, the author has decided to devote herself to
the study of asymptotic properties of ordinary differential equations. It is
perturbed half-linear equations that are investigated in this thesis, which are
of the form (

|u′|α−1u′
)′

= α
(
1 + b(t)

)
|u|α−1u. (HL)

Here it is assumed that α > 0 is a constant, and b(t) is a given continuous
function defined near +∞. A C1-function u defined near +∞ is called a
solution of equation (HL) if |u′|α−1u′ is of class C1, and (HL) is satisfied for
all sufficiently large t.

When α = 1, equation (HL) reduces to the linear equation

u′′ = (1 + b(t))u. (L)

It should be noted that the solution space of (HL) has just one half of the
properties which characterize linearity. In fact, if u is a solution of (HL),
then so is Cu for any constant C ∈ R. However, for solutions u1 and u2 of
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(HL), so is not u1 + u2, generally. By this fact, equations of the form (HL)
are called half-linear equations.

In the recent three decades many similarities between properties of solu-
tions of (HL) and those of (L) were revealed. However, as far as the author
knows, some fundamental problems and conjectures concerning asymptotic
properties of solutions of (HL) still remain unsolved yet. In this thesis we
make an attempt to solve one of such problems. More precisely, we intend
to give answers of the following problem:

Problem. When b(t) is small, in some sense, near +∞ what are the asymp-
totic forms of solutions of (HL)?

For the case where α = 1, that is, for equation (L) such a problem has
been extensively investigated; see Bellman [1], Bodine and Lutz [2], Coppel
[3] and Hartman [7]. To get an insight into our problem, let us notice the
following two known facts:

Fact 1.1. Let
∫∞ |b(t)|dt < ∞. Then linear equation (L), which is a proto-

type of (HL), has two independent solutions u1 and u2 with the asymptotic
forms

u1(t) ∼ et and u2(t) ∼ e−t as t→ +∞,

respectively. Since every solution of (L) is expressed as a linear combination
of u1 and u2, every nontrivial solution u of (L) has the asymptotic form

u(t) ∼ cet or u(t) ∼ ce−t as t→ +∞,

for some constant c 6= 0. See for example [1, 3, 7]. (There are many refine-
ments of this property. See [7]). Here, of course, for two positive functions
(or negative functions) f(t) and g(t) defined near +∞ the symbol f(t) ∼ g(t)
means that limt→∞ f(t)/g(t) = 1.

Fact 1.2. Let b(t) ≡ 0 in (HL), that is, let us consider the simple half-linear
equation of constant coefficients(

|u′|α−1u′
)′

= α|u|α−1u. (HL0)

We can solve this equation explicitly. All of the solutions of (HL0) are given
by

cet, ce−t, cE(t+ t0), cF (t+ t0)
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where c and t0 are constants, E and F are, respectively, the generalized
hyperbolic sine function and the generalized hyperbolic cosine function with
exponent α. Since

E(t) ∼ c1(α)et and F (t) ∼ c2(α)et as t→∞,

for some constants c1(α), c2(α) > 0, we find that every nontrivial solution u
of (HL0) satisfies

u(t) ∼ cet or u(t) ∼ ce−t as t→∞,

where c 6= 0 is a constant. See in detail [4, 6]. (In the Appendix we give the
definitions, fundamental properties, and asymptotic properties of E(t) and
F (t), and give proofs of them.)

From these facts it is natural to conjecture that, if b(t) is sufficiently small
near +∞, then every nontrivial solution u of (HL) has the asymptotic form

u(t) ∼ cet or u(t) ∼ ce−t as t→∞,

for some constant c 6= 0. In this thesis we give affirmative answers to this
conjecture.

This thesis is organized as follows. In Section 2 we collect preparatory
results which will be employed latter. In Section 3 we consider our Problem
under the signum condition b(t) ≥ 0 near +∞ or b(t) ≤ 0 near +∞. We will
show that our conjecture is true with these additional conditions. In Section
4 we consider our Problem without signum conditions on b(t). We show that
our conjecture is also true if another smallness condition is imposed on b(t).

The difficulty in proving the main results later comes from mainly the
following two facts:

(i) The solution space of a half-linear equation is not a linear space;
(ii) There is not a so-called variation of constants formula for half-linear

equations.
So in this thesis we must give the proofs of main results without employing
the well-known results concerning the properties of linear equations.

2 Preliminaries

In this section we give and prove preparatory results concerning nontrivial
solutions of equation (HL).
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Firstly we note that local solutions of half-linear equation (HL) and linear
equation (L) have the following common property:

Lemma 2.1. Every initial value problem of equation (HL) has the unique so-
lution which exists globally on the whole interval under consideration. There-
fore, solutions u(t) of (HL) satisfying u(t0) = u′(t0) = 0 for some t0 must be
u(t) ≡ 0.

See [4, Theorem 1.1.1] or [10, Lemma 4.2] for the proof of this lemma.

Lemma 2.2. Let 1 + b(t) ≥ 0 for sufficiently large t. Then every nontrivial
solution of (HL) is of constant sign near +∞. (So it has no zeros near +∞.)

Proof. Let T > 0 be a sufficiently large number such that 1 + b(t) ≥ 0
for t ≥ T, and u(t) be a nontrivial solution of (HL) on [T,∞). If u is not
of constant sign near +∞, then there are two points T1, T2 ≥ T satisfying
T1 < T2 and

u(T1) = 0, u′(T1) > 0, u′(T2) = 0, and u(t) > 0 for t ∈ (T1, T2).

(By Lemma 2.1, the case that u′(T1) = 0 is excluded.) An integration of
(HL) on [T1, T2] gives

−
[
u′(T1)

]α
= α

∫ T2

T1

(
1 + b(s)

)
u(s)αds,

which is an obvious contradiction. So u is of constant sign near +∞. This
completes the proof.

Lemma 2.3. Let 1 + b(t) ≥ 0 for sufficiently large t and
∫∞ |b(t)|dt <

∞. Then every nontrivial solution u of equation (HL) satisfies one of the
following two properties as t→∞ :

(i) |u′(t)| ↑ ∞ ( and therefore |u(t)| ↑ ∞) as t→∞;
(ii) |u′(t)| ↓ 0 and |u(t)| ↓ 0 as t→∞.

Since u(t) is a solution of (HL) if and only if so is −u(t), by Lemma 2.2
we may assume that u(t) > 0 near +∞. Therefore in this thesis below we
will consider mainly (eventually) positive solutions of equation (HL). Note
that, for positive solutions u of (HL), the properties (i) and (ii) of Lemma
2.3 can be recasted as follows:

(i) u′(t) ↑ ∞ ( and therefore u(t) ↑ ∞ ) as t→∞;

4



(ii) u′(t) ↑ 0, and u(t) ↓ 0 as t→∞.

For simplicity let us call positive solutions u of (HL) (or of equations of the
same types) satisfying the property (i) as increasing solutions, and positive
solutions u satisfying the property (ii) as decreasing solutions, respectively.

Proof of Lemma 2.3. Let T > 0 be a sufficiently large number such that
1 + b(t) ≥ 0, t ≥ T. We may suppose that u(t) > 0, t ≥ T. Then, by
equation (HL) we see that |u′(t)|α−1u′(t) is increasing on [T,∞); that is,
u′(t) is increasing on [T,∞). We divide the argument into several cases by
the limit of u′(t) as t→∞.

Let u′(t) ↑ ∞ as t→∞. Then the property (i) of the statement holds.
Next, let u′(t) ↑ c as t → ∞ for some constant c > 0. Then u(t) ∼ ct as

t→∞, and an integration of equation (HL) gives

|u′(t)|α−1u′(t)− |u′(T )|α−1u′(T ) = α

∫ t

T

(
1 + b(s)

)
u(s)αds

≥ c1

∫ t

T

(
1 + b(s)

)
sαds (2.1)

for some constant c1 > 0. Since∫ t

T

(
1 + b(s)

)
sαds ≥ 1

α + 1

(
tα+1 − Tα+1

)
− tα

∫ ∞
T

|b(s)|ds

−→∞ as t→∞,

(2.1) is a contradiction to the fact limt→∞ u
′(t) = c.

Let u′(t) ↑ 0 as t → ∞. Then u′(t) < 0 near +∞; and therefore u(t)
decreases near +∞. Since u(t) > 0, we have u(t) ↓ l for some constant l ≥ 0.
If l > 0, then u(t) ≥ l near +∞. We get from (2.1)

|u′(t)|α−1u′(t)− |u′(T )|α−1u′(T ) ≥ lα
∫ t

T

(
1 + b(s)

)
ds

≥ lα
{

(t− T )−
∫ ∞
T

∣∣b(s)∣∣ds}
−→∞ as t→∞.

This is a contradiction to the fact limt→∞ u
′(t) = 0. Therefore u(t) ↓ 0 ( and

u′(t) ↑ 0), and the property (ii) holds.
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Finally let u′(t) ↑ c as t → ∞ for some constant c < 0. However, this
implies that u(t) ∼ ct as t → ∞. Since u(t) > 0, this is an obvious contra-
diction.

This completes the proof.

Remark 2.4. Under the assumption of Lemma 2.3, positive solutions u of
(HL) satisfying the property (i) and the property (ii) of Lemma 2.3, respec-
tively, surely exist.

In fact, let u be the solution of (HL) with the initial condition u(t0) = u0 >
0 and u′(t0) = u1 > 0, t0 > 0. Then we can show that u′(t) remains positive
as long as u exists. Since every local solution of (HL) can be prolonged to
+∞ [4, Theorem 1.1.1], this u(t) satisfies u(t), u′(t) > 0 for t ≥ t0; and so
u(t) satifies the property (i) of Lemma 2.3.

The existence of solutions satisfying the property (ii) of Lemma 2.3 was
proved in [10, Theorem 5.1].

3 The case where b(t) is of constant signs

In this section we give the affirmative answer to our conjecture under the
condition that b(t) is of constant sign near +∞. Thus, it is convenient to
rewrite equation (HL) in the following two equations:(

|u′|α−1u′
)′

= α(1 + p(t))|u|α−1u, (HL+)(
|u′|α−1u′

)′
= α(1− p(t))|u|α−1u. (HL−)

In this section we assume the next conditions:

(A1) p ∈ C[0,∞);
(A2) p(t) ≥ 0 near +∞ for (HL+); 0 ≤ p(t) ≤ 1 near +∞ for (HL−),
(A3)

∫∞
p(t)dt <∞.

The following is the main result of this section which gives an answer to
our Problem:

Theorem 3.1. ([8]) Under assumptions (A1)− (A3), every nontrivial solu-
tion u of (HL+) and (HL−) has the asymptotic form

u(t) ∼ cet or u(t) ∼ ce−t as t→∞, (3.1)
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for some constant c 6= 0.
More precisely, every nontrivial solution u of (HL±) satisfying the prop-

erty (i) of Lemma 2.3 has the former asymptotic form of (3.1), and every
nontrivial solution u of (HL±) satisfying the property (ii) of Lemma 2.3 has
the latter.

To give the proof of Theorem 3.1 we prepare further several lemmas. The
following simple point-wise inequalities are used to estimate several integrals
in the sequel:

Lemma 3.2. (i) Let β ≥ 1. Then (1− x)β ≥ 1− βx for x ∈ [0, 1].

(ii) Let 0 < β ≤ 1. Then (1− x)β ≥ 1− x for x ∈ [0, 1].

(iii) Let 0 < β ≤ 1. Then (1 + x)β ≤ 1 + x for x ≥ 0.

(iv) Let β ≥ 1 and M > 0 be a constant. Then there is a constant K =
KM > 0 such that

(1 + x)β ≤ 1 +Kx for x ∈ [0,M ].

(In fact, we may take K = [(1 +M)β − 1]/M.)

The following comparison principle will be employed in several places.
The proof is found, for example, in [10, Lemma 4.1].

Lemma 3.3. Suppose that p1, p2 ∈ C[t0, t1] and 0 ≤ p1(t) ≤ p2(t) on [t0, t1].
Let ui, i = 1, 2, be solutions on [t0, t1] of the equations

(|u′i|α−1ui)′ = pi(t)|ui|α−1ui, i = 1, 2,

respectively, satisfying

u1(t0) ≤ u2(t0) and u′1(t0) < u′2(t0).

Then u1(t) < u2(t) and u′1(t) < u′2(t) on (t0, t1].

Since conditions (A2) and (A3) are assumed throughout this section (espe-
cially in Theorem 3.1), every positive solution of equation (HL+) and (HL−)
satisfies the property either (i) or (ii) of Lemma 2.3. We will consider asymp-
totic forms of positive solutions of these two types separately: in Section 3.1
we give the asymptotic forms of positive solutions satisfying the property (i)
of Lemma 2.3; that is, positive increasing solutions; and in Section 3.2 we
do so for positive decreasing solutions. The proof of Theorem 3.1 will be
completed by unifying these results in Sections 3.1 and 3.2.
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3.1 Asymptotic forms of positive increasing solutions
of (HL±).

Here, as stated above, we treat positive increasing solutions of (HL±); that
is positive solutions u of (HL±) satisfying the property (i) of Lemma 2.3:
u′(t) ↑ ∞ and u(t) ↑ ∞ as t→∞.

Lemma 3.4. (i) Let u be a positive solution of (HL+) on [T,∞) satisfying
the property (i) of Lemma 2.3 for sufficiently large T > 0. Then

u(t) ≥ cet, t ≥ T, for some constant c > 0. (3.2)

(ii) Let u be a positive solution of (HL−) on [T,∞) satisfying the property
(i) of Lemma 2.3 for sufficiently large T > 0. Then

u(t) ≤ cet, t ≥ T, for some constant c > 0. (3.3)

Proof. We give only the proof of (i), because (ii) can be proved similarly.
We may assume that u′(t) > 0 on [T,∞). Let c > 0 be a sufficiently small

number such that
u(T ) > ceT and u′(T ) > ceT .

Put z(t) = cet, t ≥ T. Then z satisfies u(T ) > z(T ), u′(T ) > z′(T ), and

(|z′|α−1z′)′ = α|z|α−1z, t ≥ T.

By Lemma 3.3 we obtain (3.2) as desired.

Lemma 3.5. Let u be a positive solution of (HL+) or (HL−) satisfying the
property (i) of Lemma 2.3. Then the function u(t)/et is eventually monotone
near +∞.

Proof. Let u(t), u′(t) > 0 on [T,∞) and put v(t) = u(t)/et. We will show
that v′(t) ≥ 0 near +∞, or v′(t) ≤ 0 near +∞, by contradiction.

If this is not the case, then there are three points t1, t2 and t3 (T < t1 <
t2 < t3) satisfying

v′(t1)v
′(t2) < 0 and v′(t1)v

′(t3) > 0.

We can assume that

v′(t1) > 0, v′(t2) < 0, and v′(t3) > 0.
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Then there are two points τ1 ∈ (t1, t2) and τ2 ∈ (t2, t3) such that

v′(τ1) = 0, v′′(τ1) ≤ 0, and

v′(τ2) = 0, v′′(τ2) ≥ 0. (3.4)

On the other hand, note that v(t) satisfies e−tu′ = v + v′ > 0, t ≥ T, and[(
v + v′

)α]′
+ α

(
v + v′

)α
= α

(
1± p(t)

)
vα;

that is

v′′ + 2v′ + v =
(

1± p(t)
)(
v + v′

)1−α
vα. (3.5)

Let us divide the proof into two cases.

Case 1. The case where p(t) > 0, t ∈ [T, t3]. Since v′(τi) = 0, by equation
(3.5), v′′(τi) = ±p(τi)v(τi), i = 1, 2. So v′′(τ1) and v′′(τ2) have the same signs,
which is an obvious contradiction to the properties (3.4).

Case 2. The case where p(t) ≥ 0, t ∈ [T, t3]. Let {pε(t)}ε>0 be a family
of continuous functions of (t, ε) ∈ [T, t3]× (0, ε0], ε0 = const > 0, satisfying

pε(t) > p(t) on [T, t3], and lim
ε→+0

(
max
[T,t3]

(
pε(t)− p(t)

))
= 0.

Further, let z = zε be the solution of the initial value problem{
z′′ + 2z′ + z =

(
1± pε(t)

)
(z + z′)1−αzα,

z(T ) = v(T ), z′(T ) = v′(T ).
(3.6)

By the continuous dependence on the parameter [4, 11], for sufficiently small
ε > 0, z = zε(t) exists at least for t ∈ [T, t3], z(t) > 0, z(t) + z′(t) > 0 for
t ∈ [T, t3], and

lim
ε→+0

(
max
[T,t3]

∣∣z′ε(t)− v′(t)∣∣) = 0.

Let m > 0 be a sufficiently small number satisfying

v′(t1) > m > 0, v′(t2) < −m < 0 and v′(t3) > m > 0.

For sufficiently small ε > 0, we have

|z′ε(t)− v′(t)| < m/2 for t ∈ [T, t3],
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which implies that

z′ε(t1) > v′(t1)− (m/2) > m/2 > 0,

z′ε(t2) < v′(t2) + (m/2) < −m/2 < 0, and

z′ε(t3) > v′(t3)− (m/2) > m/2 > 0.

By noting that z = zε satisfies equation (3.6) and pε(t) > 0 on [T, t3], we find
that this is a contradiction as in Case 1.

The proof is complete.

Proposition 3.6. Every positive increasing solution u of equations (HL+)
and (HL−) has the asymptotic form

u(t) ∼ cet as t→∞ for some constant c > 0. (3.7)

Proof of Proposition 3.6 for (HL+). By Lemma 3.5 the function u(t)/et is
monotone near +∞. If u(t)/et decreases, then by (i) of Lemma 3.4 we find
that u(t)/et decreases to a positive constant as t→∞; and so (3.7) holds as
desired.

Next let u(t)/et increase near +∞. We may suppose that u′ > 0 and
u(t)/et increases on [T,∞). An integration of both sides of (HL+) on [T, t]
gives

u′(t)α = u′(T )α + α

∫ t

T

(1 + p(s))u(s)αds.

Since u(t)/et increases, we get from the above

u′(t)α ≤ u′(T )α + α
u(t)α

eαt

∫ t

T

(eαs + eαsp(s))ds

= u′(T )α + α
u(t)α

eαt

[ 1

α
(eαt − eαT ) +

∫ t

T

eαsp(s)ds
]
.

Thus we obtain

u′(t)α ≤ u′(T )α + u(t)α
[
1 + αe−αt

∫ t

T

eαsp(s)ds
]
. (3.8)

The computation below slightly differs according to the value of α.

Firstly, let α > 1. By the simple inequality

(X + Y )1/α ≤ X1/α + Y 1/α for X, Y ≥ 0,
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we get from (3.8)

u′(t) ≤ u′(T ) + u(t)
[
1 + αe−αt

∫ t

T

eαsp(s)ds
]1/α

.

Further, by (iii) of Lemma 3.2 we have

u′(t) ≤ u′(T ) + u(t)
[
1 + αe−αt

∫ t

T

eαsp(s)ds
]
.

By (i) of Lemma 3.4 we obtain

u′(t)

u(t)
≤ c1e

−t + 1 + αe−αt
∫ t

T

eαsp(s)ds,

for some constant c1 > 0. An integration of both sides gives

log
u(t)

u(T )
≤ (t− T ) + c1

∫ t

T

e−sds+ α

∫ t

T

(
e−αs

∫ s

T

eαrp(r)dr
)
ds.

Since ∫ t

T

(
e−αs

∫ s

T

eαrp(r)dr
)
ds =

1

α

∫ t

T

p(s)
(
1− e−α(t−s)

)
ds

≤ 1

α

∫ ∞
T

p(s)ds <∞,

we can get

log
u(t)

u(T )
≤ t+O(1), as t→∞,

which implies that u(t) = O(et) as t→∞. By recalling the assumption that
u(t)/et increases, we find that (3.7) holds.

Next let 0 < α < 1. From (3.8) we have

u′(t) ≤ u(t)
[
1 +

u′(T )α

u(t)α
+ αe−αt

∫ t

T

eαsp(s)ds
]1/α

≡ u(t)
(
1 +B(t)

)1/α
.
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Here B(t) is defined naturally by the last equality. Since u(t)/et increases,
we find for some constants c2 and c3 > 0

0 ≤ B(t) ≤ c2e
−αt + αe−αt · eαt

∫ t

T

p(s)ds

≤ c3 + α

∫ ∞
T

p(s)ds <∞.

Therefore by (iv) of Lemma 3.2 we obtain for some constant K > 0

u′(t) ≤ u(t)
[
1 +

Ku′(T )α

u(t)α
+Kαe−αt

∫ t

T

eαsp(s)ds
]
.

Dividing the both sides by u(t), and integrating on [T, t], we have

log
u(t)

u(T )
≤ t− T + c2

∫ t

T

e−αsds+Kα

∫ t

T

(
e−αs

∫ s

T

eαrp(r)dr
)
ds

≤ t+O(1) +K

∫ ∞
T

p(s)ds.

as t → ∞. So u(t) = O(et) as t → ∞, which implies that (3.7) holds as
before. This completes the proof.

Proof of Proposition 3.6. for (HL−). The argument here is parallel to that
in the proof of Proposition 3.6 for (HL+).

By Lemma 3.5 the function u(t)/et is monotone near +∞. If u(t)/et

increases, then by (ii) of Lemma 3.4 we find that u(t)/et increases to a positive
constant as t→∞; and so (3.7) holds as desired.

Next let u(t)/et decrease near +∞. We may suppose that u′ > 0 and
u(t)/et decreases on [T,∞). An integration of both sides of (HL−) on [T, t]
gives

u′(t)α = u′(T )α + α

∫ t

T

(1− p(s))u(s)αds.
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Employing the decreasing property of u(t)/et, we get

u′(t)α ≥ α

∫ t

T

(1− p(s))eαs
[u(s)

es

]α
ds

≥ α
u(t)α

eαt

∫ t

T

(
eαs − eαsp(s)

)
ds

= u(t)α
[
1−

(
e−α(t−T ) + αe−αt

∫ t

T

eαsp(s)ds
)]

(3.9)

≡ u(t)α
(
1−B(t)

)
.

Here p(s) ≤ 1 of course, and B(t) is defined naturally by the last equality.
Since 0 ≤ p(s) ≤ 1 we observe that

0 ≤ B(t) ≤ e−α(t−T ) + αe−αt
∫ t

T

eαsds = 1, for t ≥ T.

So by (i) and (ii) of Lemma 3.2 we obtain from (3.9)

u′(t) ≥ u(t)
[
1− c

(
e−α(t−T ) + αe−αt

∫ t

T

eαsp(s)ds
)]
, (3.10)

where c > 0 is a constant given by

c =

{
1/α if 0 < α < 1;

1 if α > 1.

As before, we get from (3.10)

log
u(t)

u(T )
≥ t− T − c

∫ t

T

e−α(s−T )ds− cα
∫ t

T

e−αs
∫ s

T

eαrp(r)drds

= t+O(1) as t→∞.

So, u(t)/et ≥ c4 > 0 for some constant c4, and we find that (3.7) holds.
This completes the proof.

3.2 Asymptotic forms of positive decreasing solutions
of (HL±).

In this subsection we treat positive decreasing solutions u of (HL±); that
is, positive solutions u of (HL±) satisfying the property (ii) of Lemma 2.3:
u(t) ↓ 0 and u′(t) ↑ 0 as t→∞.
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To state auxiliary results which will be employed in proving the main
result, let us consider two half-linear equations of the form (HL±) for a
moment:

(|W ′|β−1W ′)′ = Q(t)|W |β−1W, t ≥ 0; (AQ)

(|w′|β−1w′)′ = q(t)|w|β−1w, t ≥ 0. (Aq)

Here we assume the following:
(i) β > 0 is a constant; and Q, q ∈ C[0,∞);
(ii) Q(t) ≥ q(t) > 0, t ≥ 0;
(iii)

∫∞
q(t)dt =∞ ( therefore,

∫∞
Q(t)dt =∞).

Let T ≥ 0 and h > 0 be arbitrary numbers. Then, by [10, Theorem 5.1],
equations (AQ) and (Aq), respectively, have unique positive solutions W (t)
and w(t) on [T,∞) satisfying

W (T ) = h, W (t) ↓ 0 and W ′(t) ↑ 0 as t→∞;

and
w(T ) = h, w(t) ↓ 0 and w′(t) ↑ 0 as t→∞.

Such solutions are often called Kneser solutions or positive decaying solu-
tions. Note that positive solutions of (HL±) satisfying the property (ii) of
Lemma 2.3 are positive decaying solutions of (HL±).

For example, the positive decaying solution u of the equation

(|u′|β−1u′)′ = β|u|β−1u, t ≥ 0.

passing through the point (T, h) in the tu− plane is given by u(t) = he−(t−T ).
The following comparison lemma concerning positive decaying solutions

of equations (AQ) and (Aq) plays an important role to prove our main results.

Lemma 3.7. Let W and w be positive decaying solutions of equation (AQ)
and (Aq) on [T,∞), respectively, passing through the point (T, h), T ≥ 0, h >
0. Then, W (t) ≤ w(t) for t > T.

Proof. The proof is done by contradiction. Suppose the contrary thatW (t) >
w(t) for some t > T. Then we can find an interval [t0, t1] ⊂ [T,∞) such that

W (t0) = w(t0), and W (t) > w(t), in (t0, t1]. (3.11)
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We claim that W ′(τ) > w′(τ) for some τ ∈ [t0, t1]. For, if there are no such
points, that is, if W ′(t) ≤ w′(t) on [t0, t1], then the function W (t) − w(t) is
nonincreasing on [t0, t1]. So W (t)− w(t) ≤ W (t0)− w(t0) = 0. However this
contradicts to (3.11). Hence W ′(τ) > w′(τ) for some τ ∈ [t0, t1].

Since W (τ) > w(τ), Lemma 3.3 implies that W (t) > w(t) for t ≥ τ. From
(AQ) and (Aq) we obtain

|W ′(t)|β−1W ′(t)− |w′(t)|βw′(t)
= |W ′(τ)|β−1W ′(τ)− |w′(τ)|β−1w′(τ)

+

∫ t

τ

[
Q(s)W (s)β − q(s)w(s)β

]
ds

> |W ′(τ)|β−1W ′(τ)− |w′(τ)|β−1w′(τ), for t ≥ τ.

Since limt→∞W
′(t) = limt→∞w

′(t) = 0, by letting t→∞ we obtain

0 ≥ |W ′(τ)|β−1W ′(τ)− |w′(τ)|β−1w′(τ) > 0.

This is a contradiction to the definition of τ. This completes the proof.

Lemma 3.8. (i) Let u be a positive solution of equation (HL+) on [T,∞)
satisfying the property (ii) of Lemma 2.3 for sufficiently large T > 0. Then

u(t) ≤ ce−t, t ≥ T, for some constant c > 0. (3.12)

(ii) Let u be a positive solution of equation (HL−) on [T,∞) satisfying the
property (ii) of Lemma 2.3 for sufficiently large T > 0. Then

u(t) ≥ ce−t, t ≥ T, for some constant c > 0. (3.13)

Proof. We give only the proof of (i), because (ii) can be proved similarly.
Let z(t) be the positive decaying solution of equation(

|z′|α−1z′
)′

= α|z|α−1z,

passing through the point (T, u(T )); that is, z(t) = u(T )e−(t−T ). Since α ≤
α
(
1 + p(t)

)
, Lemma 3.7 implies that

u(t) ≤ z(t) ≡ u(T )e−(t−T ), t ≥ T,

which show that (3.12) holds. This completes the proof.
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Lemma 3.9. Let u be a positive solution of (HL−) or (HL+) satisfying
the property (ii) of Lemma 2.3. Then the function u(t)/e−t is eventually
monotone.

Proof. Put v = u(t)/e−t, Then v − v′ > 0 and v satisfies

v′′ − 2v′ + v =
(
1± p(t)

)
(v − v′)1−αvα,

for large t. If v′(t̃) = 0 for some sufficiently large t̃, then v′′(t̃) = ±p(t̃)v(t̃).
So arguing as in the proof of Lemma 3.5, we find that u(t)/e−t(≡ v(t)) is
eventually monotone. This completes the proof.

Proposition 3.10. Every positive decreasing solution u of equations (HL+)
and (HL−) has the asymptotic form

u(t) ∼ ce−t as t→∞ for some constant c > 0. (3.14)

Proof of Proposition 3.10 for (HL+). By Lemma 3.9 the function u(t)/e−t

is eventually monotone. If u(t)/e−t increases, then by (i) of Lemma 3.8 we
find that u(t)/e−t converges to a positive constant as t→∞; so (3.14) holds.

Next let u(t)/e−t decrease near +∞. We may suppose that u′ < 0 and
u(t)/e−t decreases on [T,∞). Since u′(∞) = 0, from (HL+) we have

[
− u′(t)

]α
= α

∫ ∞
t

(
1 + p(s)

)
u(s)αds.

The monotonicity of etu(t) implies that

[−u′(t)]α = α

∫ ∞
t

e−αs
(
1 + p(s)

)[
esu(s)

]α
ds

≤ αeαtu(t)α
∫ ∞
t

e−αs
(
1 + p(s)

)
ds.

Thus

−u′(t) ≤ u(t)
(

1 + αeαt
∫ ∞
t

e−αsp(s)ds
)1/α

.

Firstly let α > 1. Then by (iii) of Lemma 3.2 we obtain

−u′(t) ≤ u(t)
(

1 + αeαt
∫ ∞
t

e−αsp(s)ds
)
, (3.15)
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that is

−u
′(t)

u(t)
≤ 1 + αeαt

∫ ∞
t

e−αsp(s)ds.

An integration on [T, t] gives

log
u(T )

u(t)
≤ t− T + α

∫ t

T

eαs
∫ ∞
s

e−αrp(r)drds

≤ t− T + α

∫ ∞
T

eαs
∫ ∞
s

e−αrp(r)drds

= t− T +

∫ ∞
T

(
1− e−α(s−T )

)
p(s)ds

≤ t+O(1) as t→∞.

Therefore, u(t) ≥ c1e
−t for some constant c1 > 0. Since u(t)/e−t decreases,

we find that (3.14) holds.
Secondly, let 0 < α < 1. As before we get (3.15). Note that,

0 ≤ αeαt
∫ ∞
t

e−αsp(s)ds ≤ αeαt · e−αt
∫ ∞
t

p(s)ds ≤
∫ ∞
T

p(s)ds.

Then, (iv) of Lemma 3.2 implies that for some constant K > 0 we obtain

−u′(t) ≤ u(t)
[
1 +Kαeαt

∫ ∞
t

e−αsp(s)ds
]
.

So arguing as in the case that α > 1, we can get u(t) ≥ c2e
−t for some

constant c2 > 0; and hence (3.14) holds. This completes the proof.

Proof of Proposition 3.10 for (HL−). By Lemma 3.9 the function u(t)/e−t

is eventually monotone. If u(t)/e−t decreases, then (ii) of Lemma 3.8 implies
that u(t)/e−t converges to a positive constant as t→∞; and so (3.14) holds.

Let us consider the case where u(t)/e−t increases. We may suppose that
u′ < 0 and u(t)/e−t increases on [T,∞). From (HL−) we have[

− u′(t)
]α

= α

∫ ∞
t

(
1− p(s)

)
u(s)αds.

The monotonicity of u(t)/e−t implies that[
− u′(t)

]α ≥ αeαtu(t)α
∫ ∞
t

(
e−αs − p(s)e−αs

)
ds,
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that is [
− u′(t)

]α ≥ u(t)α
[
1− αeαt

∫ ∞
t

p(s)e−αsds
]
.

Notice that

αeαt
∫ ∞
t

e−αsp(s)ds ≤ αeαt · e−αt
∫ ∞
t

p(s)ds

≤
∫ ∞
T

p(s)ds ≤ 1, t ≥ T,

for sufficiently large T . Therefore (i) and (ii) of Lemma 3.2 implies that,

−u′(t) ≥ u(t)
[
1− cαeαt

∫ ∞
t

e−αsp(s)ds
]
, t ≥ T, (3.16)

where c is a constant given by

c =

{
1/α if 0 < α < 1;

1 if α > 1.

Dividing the both sides of (3.16) by u(t), and integrating the resulting in-
equality on [T, t], we obtain

log
u(T )

u(t)
≥ t− T − cα

∫ t

T

(
eαs
∫ ∞
s

e−αrp(r)dr
)
ds

≥ t− T − cα
∫ ∞
T

(
eαs
∫ ∞
s

e−αrp(r)dr
)
ds

= t− T − c
∫ ∞
T

(
1− e−α(s−T )

)
p(s)ds

= t+O(1) as t→∞.

Therefore, u(t) ≤ c2e
−t for some constant c2 > 0. Since u(t)/e−t increases,

we find that (3.14) holds. This completes the proof.

As stated before, it is found that Theorem 3.1 is a direct consequence of
Propositions 3.6 and 3.10.
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4 The case where b(t) is not of constant sign

In the previous section we have considered our Problem introduced in the
Introduction under the condition that b(t) is of constant sign. However, we
conjecture that such a signum condition on b(t) may be superflous. So in
this section let us consider the Problem without signum conditions on b(t).

We assume throughout this section the next conditions for equation (HL):

(B1) limt→∞ b(t) = 0;

(B2)
∫∞ |b(t)|dt <∞.

Notice that, in the previous section Section 3, any conditions like (B1) are
not assumed, while condition (B2), which is essentially the same as condition
(A3), is imposed.

As in Section 3, we find that every positive solution u of (HL) is either an
increasing solution or a decreasing solution when (B1) and (B2) hold. The
following is the main result of this section which gives another affirmative
answer to our Problem:

Theorem 4.1. ([9]) Under assumptions (B1) and (B2), every nontrivial so-
lution u of (HL) has the asymptotic form

u(t) ∼ cet or u(t) ∼ ce−t as t→∞ (4.1)

for some constant c 6= 0.
More precisely, every positive increasing solution u of (HL) has the former

asymptotic form of (4.1), and every positive decreasing solution u of (HL)
has the latter.

In Section 3, to see the main result Theorem 3.1 the signum condition of
the coefficient function p(t) of (HL±) has been essentially employed. Thus
in this section it seems that the method developed in the proof of Theorem
3.1 does not work well. We therefore must find out other methods in proving
Theorem 4.1. The key tool in our discussion below is asymptotic analysis of
solutions of generalized Riccati equations associated with equation (HL).

It is well know [1, 4, 7] that oscillatory properties of half-linear or linear
equations can be clarified by the analysis of generalized Riccati equations
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associated with them. In fact, there have been lots of results concerning
oscillatory and/ or nonoscillatory properties of half-linear equations obtained
through the analysis of generalized Riccati equations; see [4, 7]. Here in this
thesis, we will prove the main result Theorem 4.1 by applying analysis of
generalized Riccati equations associated with (HL).

Related results of generalized Riccati equations are also found in [1, 4, 5,
7, 12].

In Section 4.1 we determine the asymptotic form of positive increasing
solutions of (HL); while in Section 4.2 we determine that of positive decreas-
ing solutions of (HL). The proof of Theorem 4.1 will be finished immediately
by unifying these results.

4.1 Asymptotic forms of positive increasing solutions
of (HL)

We consider asymptotic forms of positive increasing solutions u of (HL); that
is, those positive solutions u which satisfy u′(t) ↑ ∞ and u(t) ↑ ∞ as t→∞.

Proposition 4.2. Every positive increasing solution u of equation (HL) has
the asymptotic form

u(t) ∼ cet as t→∞ for some constant c > 0.

The proof of Proposition 4.2 needs several lemmas:

Lemma 4.3. Let u be a positive solution of (HL) satisfying property (i) of
Lemma 2.3, and put w =

(
u′/u

)α
for sufficiently large t. Then w satisfies

the generalized Riccati equation

w′ = α
(
1 + b(t)

)
− αw

α+1
α . (4.2)

This lemma can be proved by a direct computation.

Lemma 4.4. Let u be a positive solution of (HL) satisfying property (i) of
Lemma 2.3. Then limt→∞ u

′(t)/u(t) = 1.

Proof. Put q(t) =
(
1 + b(t)

)α/(α+1)
. Then limt→∞ q(t) = 1, and the function

w =
(
u′/u

)α
satisfies

w′ = α
(
q(t)

α+1
α − w

α+1
α

)
(4.3)
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by Lemma 4.3. It is sufficient to show that limt→∞w(t) = 1. We consider
the following three exclusive cases separately:

Case (a): w(t) ≥ q(t) near +∞;
Case (b): w(t) ≤ q(t) near +∞;
Case (c): w(t)− q(t) changes the sign in any neighborhood of +∞.
Let Case (a) occur. By (4.3) we have w′(t) ≤ 0; so w(t) decreases near

+∞. Since w(t) ≥ q(t) and limt→∞ q(t) = 1, there is a limit limt→∞w(t) =
L ∈ [1,∞). Let t → ∞ in (4.3). Then we have limt→∞w

′(t) = α
(
1 −

L(α+1)/α
)
. Since w(t) is bounded, limt→∞w

′(t) must be 0; which means that
L = 1. So limt→∞w(t) = 1.

Let Case (b) occur. We can show that limt→∞w(t) = 1 similarly.
Finally let Case (c) occur. Put L = lim inft→∞w(t) and L = lim supt→∞w(t).

Note that w′(t) > 0 [resp. w′(t) < 0] if and only if w(t) < q(t) [resp.
w(t) > q(t)]. Therefore 0 < L ≤ L <∞.

To prove limt→∞w(t) = 1, that is L = L = 1, we suppose the contrary
that this is not the case.

If L = L, then we can show L = L = 1 as before. So we may assume
L < L. From (4.3) and the fact that 0 < L < L < ∞ we have L ≤ 1 ≤ L (
and L < L). Consequently there are three possibilities:

Case (c)-(i): L < 1 < L;
Case (c)-(ii): L < 1 = L;
Case (c)-(iii): L = 1 < L.
Let Case (c)-(i) hold. Put L = 1−δ (0 < δ < 1). Then there is a sequence

{tn} satisfying

t1 < t2 < · · · < tn < tn+1 < · · · ; lim
n→∞

tn =∞;

w′(tn) = 0, and w(tn) < 1− (δ/2), n ∈ N.

By putting t = tn in (4.3), we get,

0 = w′(tn) = α
[
q(tn)

α+1
α − w(tn)

α+1
α

]
> α

[
q(tn)

α+1
α −

(
1− δ

2

)α+1
α
]
.

Let n→∞ in the above inequality. Then we have a contradiction:

0 ≥ α
[
1−

(
1− δ

2

)α+1
α
]
.
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Therefore, Case (c)-(i) does not occur. Similarly, we can show that Case
(c)-(ii) does not occur. Let Case (c)-(iii) hold. Put L = 1 + δ (δ > 0). Then
there is a sequence {tn} satisfying

t1 < t2 < · · · < tn < tn+1 < · · · ; lim
n→∞

tn =∞;

w′(tn) = 0, and w(tn) > 1 + (δ/2), n ∈ N.

As in the previous Cases, we can get a contradiction.
This completes the proof.

The following simple lemma is a variant of Gronwall’s lemma:

Lemma 4.5. Let f, g ∈ C[t0,∞), and c ≥ 0 be a constant such that f(t), g(t) ≥
0, and

f(t) ≤ c+

∫ t

t0

f(s)ds+

∫ t

t0

g(s)ds, t ≥ t0.

Then

f(t) ≤ cet−t0 +

∫ t

t0

et−sg(s)ds, t ≥ t0.

Proof. Let us put H(t) = c+
∫ t
t0
f(s)ds+

∫ t
t0
g(s)ds. Then f(t) ≤ H(t) and

H ′(t) = f(t) + g(t) ≤ H(t) + g(t), t ≥ t0,

by the assumption. Therefore,(
e−tH(t)

)′
≤ e−tg(t), t ≥ t0,

and so an integration on [t0, t] gives

H(t) ≤ cet−t0 + et
∫ t

t0

e−sg(s)ds, t ≥ t0.

Since f(t) ≤ H(t), the desired estimate of f(t) holds. This completes the
proof.

Now we are in a position to prove Proposition 4.2.
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Proof of Proposition 4.2. We may suppose that u(t) > 0 and u′(t) > 0. Let
w = (u′/u)α as in the proof of Lemma 4.4. We know that limt→∞w(t) = 1.
Further put z(t) = w(t) − 1. Then limt→∞ z(t) = 0 and z(t) satisfies the
equation

z′ = α
(
1 + b(t)

)
− α

(
1 + z

)(α+1)/α
. (4.4)

Since (
1 + x

)α+1
α = 1 +

α + 1

α
x+ ϕ(x), |x| < 1 (4.5)

for some continuous function ϕ with ϕ(x) = O(x2), x → 0, equation (4.4)
can be rewritten as follows:

z′ + βz = −αϕ(z) + αb(t), β = 1 + α (> 0).

This is equivalent to (
eβtz

)′
= −αeβtϕ(z) + αeβtb(t). (4.6)

Let us estimate z(t). Since limt→∞ z(t) = 0 and limx→0 ϕ(x)/x = 0, there is
a sufficiently large T > 0 satisfying

α
∣∣ϕ(z(s)

)∣∣ ≤ |z(s)| for s ≥ T.

An integration of both the sides of (4.6) on [T, t] gives

eβtz(t) = c1 − α
∫ t

T

eβsϕ(z(s))ds+ α

∫ t

T

eβsb(s)ds, (4.7)

where c1 = eβT z(T ). Therefore,

eβt|z(t)| ≤ |c1|+
∫ t

T

eβs|z(s)|ds+ α

∫ t

T

eβs|b(s)|ds.

By Lemma 4.5 we have for t ≥ T,

eβt|z(t)| ≤ |c1|et−T + α

∫ t

T

et−s · eβs|b(s)|ds,

23



that is,

|z(t)| ≤ c2e
−αt + αe−αt

∫ t

T

eαs|b(s)|ds (4.8)

with some constant c2 > 0.

Recall that,

u′(t)

u(t)
= w(t)1/α =

(
1 + z(t)

)1/α
. (4.9)

Since

(1 + x)1/α = 1 +
1

α
x+ ρ(x), |x| < 1, (4.10)

for some continuous function ρ satisfying limx→0 ρ(x)/x = 0, we obtain from
(4.9) ∫ t

T

u′(s)

u(s)
ds =

∫ t

T

(
1 + z(s))1/αds

=

∫ t

T

[
1 +

1

α
z(s) + ρ

(
z(s)

)]
ds,

and so

e−tu(t) = u(T ) exp
(
− T +

1

α

∫ t

T

z(s)ds+

∫ t

T

ρ(z(s))ds
)
.

To see u(t) ∼ cet for some constant c > 0, it is sufficient to show that∫∞ |z(s)|ds < ∞ and
∫∞ |ρ(z(s))|ds < ∞. In the following we will show

these facts. By (4.8) and (B2) we find that,∫ ∞
T

|z(t)|dt ≤ c2

∫ ∞
T

e−αtdt+ α

∫ ∞
T

e−αt
∫ t

T

eαs|b(s)|dsdt

≤ const +

∫ ∞
T

|b(t)|dt <∞.

Since we may assume that T is sufficiently large, we find from the property
of ρ that, ∣∣ρ(z(t)

)∣∣ ≤ |z(t)| for t ≥ T.

Therefore, ∫ ∞
T

∣∣ρ(z(t))
∣∣dt ≤ ∫ ∞

T

|z(t)|dt <∞.

This completes the proof of Proposition 4.2.
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4.2 Asymptotic forms of positive decreasing solutions
of (HL)

Finally we study asymptotic forms of positive decreasing solutions u of (HL),
that is, those positive solutions u which satisfy u′(t) ↑ 0 and u(t) ↓ 0 as
t→∞.

Proposition 4.6. Every positive decreasing solution u of (HL) has the asymp-
totic form

u(t) ∼ ce−t as t→∞, for some constant c > 0.

The proof of Proposition 4.6 is carried out by the arguments parallel to
that employed in Section 4.1. We must prepare several lemmas.

Lemma 4.7. Let u be a positive solution of (HL) satisfying property (ii) of
Lemma 2.3, and put w = (−u′/u)α for sufficiently large t. Then w satisfies
the generalized Riccati equation

w′ = αw(α+1)/α − α
(
1 + b(t)

)
.

Lemma 4.8. Let u be a positive solution of (HL) satisfying property (ii) of
Lemma 2.3. Then limt→∞

[
− u′(t)/u(t)

]
= 1.

Proof. Put q(t) =
(
1 + b(t)

)α/(α+1)
. Then limt→∞ q(t) = 1, and the function

w = (−u′/u)α satisfies

w′ = α
(
w(α+1)/α − q(t)(α+1)/α

)
(4.11)

by Lemma 4.7. It suffices to show that limt→∞w(t) = 1. We consider the
following three exclusive cases separately:

Case (a): w(t) ≥ q(t) near +∞;
Case (b): w(t) ≤ q(t) near +∞;
Case (c): w(t)− q(t) changes the sign in any neighborhood of +∞.
Let Case (a) occur. Since w′(t) ≥ 0 by (4.11), there is a limit limt→∞w(t) ≡

L ∈ [1,∞]. Suppose that L = +∞. Since (α+1)/α > 1 and limt→∞ q(t) = 1,
we find from (4.11) that there is a sufficiently large T satisfying

w′(t) ≥ α

2
w(t)λ > 0, t ≥ T, λ = (α + 1)/α > 1.
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So, w′(t)w(t)−λ ≥ α/2, that is(w(t)1−λ

1− λ

)′
≥ α

2
, t ≥ T.

Integrating on [T, t], we obtain

w(T )1−λ

λ− 1
≥ α

2
(t− T ), t ≥ T.

This is an obvious contradiction. Thus L ∈ [1,∞). Letting t→∞ in (4.11),

we get limt→∞w
′(t) = α

(
L

α+1
α − 1

)
. Then as pointed out before, we have

L = 1 as desired.

Case (b) can be treated similarly; and so we find that limt→∞w(t) = 1.

Finally let Case (c) occur. Put L = lim inft→∞w(t) and L = lim supt→∞w(t).
Note that w′(t) > 0 [resp. w′(t) < 0] if and only if w(t) > q(t) [resp.
w(t) < q(t)].

To prove limt→∞w(t) = 1, we suppose the contrary that this is not the
case.

If L = L ∈ [0,∞), then we can show L = L = 1 easily. So we may assume
that L < L. We find from (4.11) that 0 ≤ L ≤ 1 ≤ L ≤ +∞ (and L < L ).
There are three possibilities:

Case (c)-(i): 0 ≤ L < 1 < L ≤ +∞;
Case (c)-(ii): 0 ≤ L < 1 = L;
Case (c)-(iii): L = 1 < L ≤ +∞.

Let Case (c)-(i) hold. Put L = 1 − δ (0 < δ ≤ 1). Then, as in the proof
of Lemma 4.4, we get a sequence {tn} satisfying

t1 < t2 < · · · < tn < tn+1 < · · · ; lim
n→∞

tn =∞;

w′(tn) = 0 and w(tn) < 1− δ

2
for n ∈ N.

Putting t = tn in (4.11), and letting n→∞ in the resulting equation, we get

0 ≤ α
[(

1− δ

2

)(α+1)/α

− 1
]
.
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This is an obvious contradiction. Similarly we can show that Case (c)-(ii)
does not occur. Let (c)-(iii) hold. Put L = 1 + δ (δ > 0) if L <∞. Then as
before we can find a sequence {tn} satisfying

t1 < t2 < · · · < tn < tn+1 < · · · ; lim
n→∞

tn =∞;

w′(tn) = 0 and w(tn) > 1 +
δ

2
for n ∈ N.

As before we can get a contradiction. The case where L =∞ can be treated
similarly.
This completes the proof.

We are now in a position to prove Proposition 4.6.

Proof of Proposition 4.6. We may assume that u(t) > 0 and u′(t) < 0. Let
w = (−u′/u)α as in the proof of Lemma 4.8, in which we have proved
limt→∞w(t) = 1. Put z(t) = w(t) − 1. Then limt→∞ z(t) = 0, and z(t)
satisfies the equation

z′ = α(1 + z)(α+1)/α − α
(
1 + b(t)

)
.

By (4.5) we can rewrite this equation into

z′ − βz = αϕ(z)− αb(t), β = 1 + α,

where ϕ(x) = O(x2) as x→ 0. It follows that(
e−βtz

)′
= αe−βtϕ(z)− αe−βtb(t),

and an integration on [t,∞) gives

e−βtz(t) = −α
∫ ∞
t

e−βsϕ
(
z(s)

)
ds+ α

∫ ∞
t

e−βsb(s)ds. (4.12)

As in the proof of Proposition 4.2, for arbitrary number ε > 0 we can find a
sufficiently large number T = Tε > 0 such that∣∣ϕ(z(s)

)∣∣ ≤ ε|z(s)|, s ≥ T.

So, from (4.12) we obtain

e−βt|z(t)| ≤ αε

∫ ∞
t

e−βs|z(s)|ds+ α

∫ ∞
t

e−βs|b(s)|ds, t ≥ T. (4.13)
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Let us denote by I(t) the right-hand side of (4.13). Then

e−βt|z(t)| ≤ I(t), and I(t) = o(e−βt) as t→∞. (4.14)

Since

−I ′(t) = αεe−βt|z(t)|+ αe−βt|b(t)|
≤ αεI(t) + αe−βt|b(t)|,

we obtain (
eαεtI(t)

)′ ≥ −αe−(β−αε)t|b(t)|. (4.15)

From now on we fix ε > 0 so small that β − αε > 0. Then by (4.14)
limt→∞ e

αεtI(t) = 0. Therefore an integration of (4.15) on [t,∞) gives

0 ≤ I(t) ≤ αe−αεt
∫ ∞
t

e−(β−αε)s|b(s)|ds.

By this estimate and the first inequality of (4.14) we find that

|z(t)| ≤ αe(β−αε)t
∫ ∞
t

e−(β−αε)s|b(s)|ds. (4.16)

Since −u′(t)/u(t) =
(
1 + z(t)

)1/α
, by (4.9) we have

−u
′(t)

u(t)
= 1 +

1

α
z(t) + ρ

(
z(t)

)
, (4.17)

where limx→0 ρ(x)/x = 0. Integrating (4.17) on [T, t], we obtain

log
u(T )

u(t)
= t− T +

1

α

∫ t

T

z(s)ds+

∫ t

T

ρ
(
z(s)

)
ds. (4.18)

By (4.16) we find that∫ ∞
T

|z(s)|ds ≤ α

∫ ∞
T

e(β−αε)s
(∫ ∞

s

e−(β−αε)r|b(r)|dr
)
ds

≤ c1

∫ ∞
T

|b(s)|ds <∞
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for some constant c1 > 0. Similarly, since ρ(x) = o(x) as x→ 0, we find that∫ ∞
T

|ρ
(
z(s)

)
|ds ≤ c2

∫ ∞
T

|z(s)|ds <∞

for some constant c2 > 0. Therefore (4.18) implies that

log
u(T )

u(t)
= t+ c3 + o(1) as t→∞

for some constant c3 ∈ R, and so

u(t) ∼ ce−t as t→∞,

for some constant c > 0.
This completes the proof of Proposition 4.6.

As stated before, it is found that Theorem 4.1 is a direct consequence of
Propositions 4.2 and 4.6.
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Appendix: Generalized hyperbolic functions

As stated in the Introduction, we give a short survey of generalized hyperbolic
functions, and the relation between them and solutions of the half-linear
equation

(|u′|α−1u′)′ = α|u|α−1u, α > 0, (A.1)

which is one of the prototypes of (HL), and is identical with equation (HL0)
in the Introduction.

Definition A.1. Let α > 0.
(i) The unique solution E(t) ≡ Eα(t) of the initial value problem

(
|E ′|α−1E ′

)′
= α|E|α−1E, t ∈ R,

E(0) = 0, E ′(0) = 1
(A.2)

is called the generalized hyperbolic sine function (with exponent α).
(ii) The unique solution F (t) ≡ Fα(t) of the initial value problem

(
|F ′|α−1F ′

)′
= α|F |α−1F, t ∈ R,

F (0) = 1, F ′(0) = 0
(A.3)

is called the generalized hyperbolic cosine function (with exponent α).

When α = 1, obviously Eα(t) and Fα(t) reduce to the hyperbolic sine
function E1(t) = sinh t = (et − e−t)/2 and the hyperbolic cosine function
F1(t) = cosh t = (et + e−t)/2, respectively.

The fundamental properties of Eα = E and Fα = F, α > 0, are as follows:

Proposition A.2. (a) E ′(t) > 0, t ∈ R, and limt→±∞E(t) = ±∞;
(b) E(−t) = −E(t), t ∈ R;

(c)
(
E ′(t)

)α+1
= |E(t)|α+1 + 1, t ∈ R;

(d)

∫ E(t)

0

dy

(1 + |y|α+1)1/(α+1)
= t, t ∈ R.

(A.4)
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Proposition A.3. (a) F ′(t) > 0, t > 0, and limt→±∞ F (t) =∞;
(b) F (−t) = F (t), t ∈ R;
(c) |F ′(t)|α+1 = F (t)α+1 − 1, t ∈ R;

(d)

∫ F (t)

1

dy

(yα+1 − 1)1/(α+1)
= |t|, t ∈ R.

In the sequel for simplicity we sometimes denote for λ ∈ R and x ∈ R

|x|λ−1x = xλ∗.

Then the following simple properties hold:

(xy)λ∗ = xλ∗yλ∗ for x, y ∈ R;

xλ∗ > y if and only if x > y1/λ∗ for x, y ∈ R;

d

dx
(xλ∗) = λ|x|λ−1; d

dx
(|x|λ) = λxλ−1∗.

For example, equation (A.1) can be rewritten as

((u′)α∗)′ = αuα∗.

Proof of Proposition A. 2. Let x(t) ≡ −E(−t). Then x(t) satisfies(
|x′|α−1x′

)′
= α|x|α−1x,

x(0) = 0, x′(0) = 1.

Since every initial value problem of (A.1) has unique solution, x(t) ≡ E(t),
namely E(−t) = −E(t). The property (b) has been proved.

We multiple the both sides of (A.2) by E ′(t), and integrate on [0, t] :∫ t

0

(
(E ′(s))α∗

)′
E ′(s)ds = α

∫ t

0

(E(s))α∗E ′(s)ds.

By putting w(s) = (E ′(s))α∗, that is E ′(s) = w(s)1/α∗, we obtain∫ t

0

w(s)
1
α
∗w′(s)ds = α

∫ t

0

(E(s))α∗E ′(s)ds.
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Since the left hand-side is

α

α + 1

(
|w(t)|

α+1
α − 1

)
=

α

α + 1

(
|E ′(t)|α+1 − 1

)
,

we have
|E ′(t)|α+1 = 1 + |E(t)|α+1, t ∈ R.

This identity shows that E ′(t) 6= 0 for any t ∈ R. Noting that E ′(0) = 1, we
find that E ′(t) > 0 by the intermediate value theorem, and the property (c)
holds.

The property (c) implies that E ′(t) ≥ 1, t ∈ R, which shows that
limt→∞E(t) =∞. Since E(t) is an odd function, limt→−∞E(t) = −∞.

The property (c) implies that

E ′(t)
(
|E(t)|α+1 + 1

)−1/(α+1)
= 1, t ∈ R.

So an integration on [0, t] gives the property (d). This completes the proof.

Proof of Proposition A.3. As in the proof of Proposition A. 2, we can prove
F (−t) = F (t), t ∈ R.

Similarly we can find from (A.3) that

|F ′(t)|α+1 = |F (t)|α+1 − 1, t ∈ R, (A.5)

which implies |F (t)|α+1 ≥ 1, t ∈ R. Noting that F (0) = 1, we find that
F (t) > 0 and F (t) ≥ 1, t ∈ R. So we get the property (c) from (A.5).

Since F (t) ≥ 1, t ∈ R, (A.3) implies that(
(F ′(t))α∗

)′ ≥ α, t ∈ R.

An integration on [0, t], t > 0 gives

(F ′(t))α∗ ≥ αt; i.e., F ′(t) ≥ α1/αt1/α.

Therefore F ′(t) > 0, t > 0, and limt→∞ F (t) =∞.
The property (d) can be proved as in the proof of Proposition A. 2.

This completes the proof.

The assertion of the following proposition is essentially that of the first
half of Fact 1.2 in the Introduction:
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Proposition A.4. Let α > 0, and u0, u1 ∈ R. Then the solution u of the
initial value problem (

|u′|α−1u′
)′

= α|u|α−1u, (A.6)

u(0) = u0, u′(0) = u1 (A.7)

has one of the following forms:

(a) u(t) = Ket;

(b) u(t) = Ke−t;

(c) u(t) = KE(t+ t0);

(d) u(t) = KF (t+ t0),

where K, t0 ∈ R are some constants, and E and F are generalized hyperbolic
sine function E = Eα and the generalized hyperbolic cosine function F = Fα,
respectively.

Proof. We may assume that |u0|+ |u1| > 0, because the solution u of (A.6)-
(A.7) with u0 = u1 = 0 is u ≡ 0 by Lemma 2.1.

As before we find that the solution u of (A.6)-(A.7) satisfies

|u′(t)|α+1 − |u(t)|α+1 = |u1|α+1 − |u0|α+1 ≡put C. (A.8)

The proof is divided into three cases according to the sign of C.

Case 1. The case where C = 0. In this case, from (A.8) we obtain

|u′(t)| = |u(t)|; and

u1 = ± u0.

If u1 = u0, then u(t) = u0e
t, and if u1 = −u0, then u(t) = u0e

−t.
Case 2. The case where C > 0.

(i) Further suppose u0u1 > 0. Let t0 > 0 be the number such that

(sgn u0) C
1

α+1 E(t0) = u0.

We will show that

u(t) = (sgn u0) C
1

α+1 E(t+ t0).
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To this end, put y(t) = (sgn u0) C
1

α+1 E(t+t0). Then obviously y is a solution
of (A.6), and y(0) = u0 by the definition of t0. Employing the properties of
E (Proposition A. 2) and (A.8), we can examine y′(0) :

(y′(0) (sgn u0))
α+1 = CE ′(t0)

α+1 = C(E(t0)
α+1 + 1)

= (C
1

α+1E(t0))
α+1 + C = ((sgn u0) u0)

α+1 + C

= |u0|α+1 +
(
|u1|α+1 − |u0|α+1

)
= |u1|α+1.

Therefore y′(0) (sgn u0) = |u1|, and so

y′(0) = |u1| (sgn u0) = |u1| (sgn u1) = u1.

By the uniqueness of solutions of initial value problems, we find that

u(t) ≡ y(t) = (sgn u0) C
1

α+1 E(t+ t0)

as desired.
(ii) Suppose u0u1 < 0. Let t0 < 0 be the number such that

(sgn u1) C
1

α+1 E(t0) = u0.

Then, as in (i) we can show that

u(t) = (sgn u1) C
1

α+1 E(t+ t0).

(iii) Suppose u0 = 0 (and u1 6= 0). Then u(t) = u1E(t).
Note that the case u1 = 0 does not occur.
Case 3. The case where C < 0. For simplicity we put C = −C0 (C0 > 0).

So (A.8) can be rewritten as

|u′(t)|α+1 − |u(t)|α+1 = |u1|α+1 − |u0|α+1 = −C0.

(i) Suppose further u0u1 > 0. Let t0 > 0 be the number such that

(sgn u0) C
1

α+1

0 F ′(t0) = u1.

We will show that

u(t) = (sgn u0) C
1

α+1

0 F (t+ t0). (A.9)
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Put y(t) = (sgn u0) C
1

α+1F (t+ t0). Then y is a solution of (A.6) and y′(0) =
u1. Further we find from the property of F and (A.8)(

y(0)(sgn u0)
)α+1

= C0F (t0)
α+1 = C0(F

′(t0)
α+1 + 1)

= (C
1

α+1

0 F ′(t0))
α+1 + C0

= ((sgn u0)u1)
α+1 + (−|u1|α+1 + |u0|α+1) = |u0|α+1.

Therefore y(0) (sgn u0) = |u0| = u0 (sgn u0); and so y(0) = u0. We have
(A.9) as before.
(ii) Suppose u0u1 < 0. Then there is a t0 < 0 such that

(sgn u0) C
1

α+1

0 F ′(t0) = u1.

We can show, as before, that

u(t) = (sgn u0) C
1

α+1

0 F (t+ t0).

(iii) Suppose u1 = 0 (and u0 6= 0). Then u(t) = u0F (t).
Note that the case u0 = 0 does not occur.
This completes the proof of Proposition A. 4.

The following proposition shows that both Eα(t) and Fα(t), α > 0, behave
like cet, c = const > 0, as t→∞:

Proposition A.5. Let α > 0. For E(t) = Eα(t) and F (t) = Fα(t) we have

(i) lim
t→∞

E(t)

et
= const ∈ (0,∞);

(ii) lim
t→∞

F (t)

et
= const ∈ (0,∞).

Proof. We may show that

lim
t→∞

(t− logE(t)) = const ∈ R; and

lim
t→∞

(t− logF (t)) = const ∈ R.
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(i) By (A.4), for large t > 0 satisfying E(t) > 1 we have

t− logE(t) = t−
∫ E(t)

1

ds

s

=

∫ E(t)

0

ds

(sα+1 + 1)1/(α+1)
−
∫ E(t)

1

ds

s

=

∫ 1

0

ds

(sα+1 + 1)1/(α+1)
−
∫ E(t)

1

[1

s
− 1

(sα+1 + 1)1/(α+1)

]
ds.

Noting that E(∞) =∞, it suffices to show that∫ ∞
1

[1

s
− 1

(sα+1 + 1)1/(α+1)

]
ds <∞. (A.10)

By employing the Mean Value Theorem to the function y 7→ y1/(α+1), we find
for s ≥ 1 that

0 ≤ 1

s
− 1

(sα+1 + 1)1/(α+1)
=

(sα+1 + 1)1/(α+1) − (sα+1)1/(α+1)

s (sα+1 + 1)1/(α+1)

≤ 1

α + 1
.

1

sα+1(sα+1 + 1)1/(α+1)
≤ 1

α + 1
.

1

sα+2
.

Therefore (A.10) holds.
Similarly we can show that (ii) holds. This completes the proof.

36



Acknowledgments

Fisrt of all, I would like to express my sincere gratitude to my supervisor,
Professor Hiroyuki USAMI of Gifu University for his advice, guidance,
motivation, and support my researches and my stay in Japan. Without his
guidance, his helpful and dedicated involvement in every step throughout the
process of researching and writing this thesis, this thesis would have never
been accomplished.

Apart from my supervisor, I would like to sincerely thank my co-supervisors,
Professor Shintaro KONDO, and Professor Atsushi KAMEYAMA for
their advice, comment, and correction of my thesis exam that helped to make
my thesis more valuable and expanded the scope of my research. I would like
to sincerely thank Professor Kenzi ODANI of Aichi University of Education
for his advice, guidance, encouragement and motivation for me to become
a doctoral student. I profoundly thank to His Excellency Dr. Sovanna
SIENG, director of the National Institute of Education, for his support and
motivation to me for pursuing my study in Japan.

Finally, I would to express my gratitude to my parents, sibling, husband,
and my lovely children for their support, encouragement, and motivation me
to achieve my goals.

37



References

[1] R. Bellman, Stability Theory of Differential Equations, Dover Publica-
tions, 2008.

[2] S. Bodine and D. A. Lutz, Asymptotic Integration of Differential and
Difference Equations, Lecture Notes in Mathematics 2129, Springer,
2015.

[3] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equa-
tions, Heath, 1965.
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